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The formations of structures in all systems of interacting particles at different temperatures and particle 
concentrations have the same physical nature and therefore they could be described geometrically the 
same way. We propose a geometric description of a thermodynamically stable distribution of interacting 
particles. The character and intensity of interaction between particles determine the effective geometry of 
the medium which is provided by the minimum of the total free energy with non-linearity. A realization 
of spaces with possible particle distributions of arbitrary-order symmetries (including fifth, seventh etc. 
orders) which cannot occur in the ordinary Euclidean space, is described.

© 2017 Published by Elsevier B.V.

Any physical theory is based on the postulated geometric prop-
erties of the space. The problem of the geometry as a whole is 
equivalent to the problem of the behavior of the fields which form 
the space [1–5]. We think that in the problem formulated in a such 
way, the geometric aspect is important not only for the description 
of the Universe but also for study of the physical phenomena.

For the last years the big interest has been growing to the 
application of the methods of differential geometry in statistical 
physics and thermodynamics. The geometric approach is repre-
sented by two main ways of investigation. One of them is con-
nected with the metric but another one considers the contact 
structure of the thermodynamic phase space. Using the metric ten-
sor we can calculate the scalar curvature for some statistic and 
thermodynamic models and study the consequences that appear 
from the connection between metric and physical quantities. The 
another idea is that the curvature is proportional to the inverse 
free energy of the system. The scalar curvature is divergent near 
the critical point and due to its connection with the second mo-
ments of fluctuation the stability of the systems can be measured 
[6,7].

The average degree of instability of Hamiltonian dynamics can 
be given in terms of curvature-related quantities integrated over 
the whole mechanical (Riemannian) manifold. This fact establishes 
a link between dynamical aspect of a given system, the stability or 
instability of its trajectories and some global geometric properties 
of its associated mechanical manifold [8].

In the light of Riemann geometrization of Hamiltonian dynam-
ics, where Lyapunov exponents are related to the average curvature 

E-mail address: blev@bitp.kiev.ua (B.I. Lev).

properties of submanifolds of configuration space [9], the tempera-
ture dependence of abstract geometric observables, such as for e.g. 
the averages of curvature fluctuations, has been investigated [10].

Deformations of submanifolds of thermodynamic equilibrium 
states introduced by continuous contact maps on a phase-space 
manifold have been considered in terms of the geometrical formu-
lation of thermodynamics [11].

In Riemannian geometric approach to thermodynamics the the-
ory of fluctuations is also considered [12]. In such approach for the 
case of two independent thermodynamic variables the Riemann 
curvature is postulated to be inversely proportional to the free en-
ergy near the critical point [13]. That leads to a partial differential 
geometric equation for the free energy. Following [13], the solution 
is a generalized homogeneous function of its arguments and spec-
ifying the values of the critical exponents results in a full scaled 
equation of state. Latter this postulate was generalized for a case
with more than two independent thermodynamic variables [14].

In condensed matter physics the attempts have already been 
made to use the geometric approach for the description of the 
phase space [6–9,15–17] to find the criteria of phase transitions [6,
7,16,18] to study the formation of the phase boundary [19] and 
the membrane [20]. The geometric aspect of the physical phenom-
ena occurring in condensed matter can be important for study 
of structural phase transitions which accompanied by the forma-
tion of nonuniform distributions of interacting particles [21,22]. 
A nonuniform particle distribution can induce an individual ef-
fective space which reflects the character and intensity of inter-
action in the system. In Euclidean space we observe the particle 
distribution determined either by the structure of the crystal in 
which redistribution of spins, dipoles, atoms, molecules occurs or 
by the geometry of the sample with fixed boundaries in which 
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the macroscopic structures are formed. But the effective geome-
try of the particle distribution can be another than Euclidean. This 
observation is especially important for soft systems with parti-
cle distributions governed only by the character and intensity of 
the intrinsic interaction. Even in the crystal structures formed by 
the interaction between atoms, an effective non-Euclidean geome-
try can occur and be manifested in the existence of quasicrystals, 
fullerenes etc. [23].

There is some approach to use the geometric aspects for the de-
scription of physical problems of condensed matter. First of all it is 
the usage of the direct analogue with the general theory of relativ-
ity. Other approach is based on the definition of interacting particle 
distribution in the curved space. In biophysics and the theory of 
liquid crystals we have solved the problem of definition of the 
form of new formation obtained from a minimum of the free en-
ergy. Nevertheless the very important questions remain unsolved 
about the possible internal reasons induced the change of internal 
geometry in the system of interacting particles and how the char-
acter and magnitude of interaction between particles change this 
geometry. The pure gravitational interaction in the system of self-
gravitating particles leads to the fractal distribution of particles in 
the space [24].

Many physical and chemical systems (e.g., membranes, vesi-
cles, type I superconductor films) displaying macroscopic patterns 
and textures in equilibrium have been analyzed within the frame-
work of competing interactions. The related phenomena of struc-
ture formation in colloidal suspensions and superlattice formation 
in adsorbate films on crystalline substrates have also been inves-
tigated [25]. In condensed matter physics the phase transitions 
with the formation of spatially inhomogeneous distribution of par-
ticles, clusters or cellular structures are of the great interest. It was 
shown earlier that the formations of structures in all systems of in-
teracting particles have the same physical nature [26] and thereby 
allowing us to describe them geometrically the same way.

The purpose of this paper is to find the effective space of a 
thermodynamically stable distribution of interacting particles and 
to give a geometrical description of the structural phase transitions 
induced by the character and intensity of the interaction in the 
system.

Thus we consider the system of many particles. The free en-
ergy in self-consistent field and in many-body approximation can 
be written as

F = F p + Fs + Fn. (1)

Here

F p =
∫

U (r − r′) f (r) f (r′)drdr′ + ... (2)

is the free energy in terms of particle distribution function f (r), 
U (r − r′) is the sum of all energies of particle interactions,

Fs = kT

∫
( f (r) ln f (r) + [1 − f (r)] ln[1 − f (r)])dr (3)

is the entropy part of the free energy,

Fn =
∫

f (r)
∑

i

W (ri − r)dr (4)

is the free energy resulting from the coupling between particles 
and matter where W (r) gives the microscopical information about 
wetting properties of the surface of particle location in spatial 
point ri .

The minimum of the free energy (1) corresponds to the self-
consistent field solution for f (r). If distribution of particles in the 
system is homogeneous in every spatial point ri then f (ri) = c

where c = const is the particle concentration. In the case of in-
homogeneous particle distribution f (r) = c + ϕ(r) where ϕ (r) is 
the deviation of particle concentration from equilibrium in differ-
ent spatial points. In continuum description (when the deviations 
of c are smooth on the scale much longer than the distance be-
tween particles) we can write ϕ (r) as power series expansion

ϕ(r′) = ϕ((r) + ρi∂iϕ(r) + 1

2
ρiρ j∂ j∂iϕ(r) + ... (5)

where ρ = r − r′ is the distance between two particles. In long-
wavelength approximation, using the expansion (5) and taking into 
account that 

∫
f (r)dr = N , 

∫
ϕ(r)dr = 0, we can rewrite the free 

energy (1) as

�F (ϕ) =
∫

dr
{

1

2
l2 (∇ϕ)2 − 1

2
μ2ϕ2 + 1

4
λϕ4 − εϕ

}
(6)

where the coefficients

μ2 = V − kT

c(1 − c)
, V =

∫
U (ρ)dρ, l2 =

∫
U (ρ)ρ2dρ (7)

are determined through the energy of interaction between the par-
ticles in the system.

The coefficient λ is responsible for the non-linearity of the sys-
tem which is induced by the many-body interaction. As example 
λ ∝ ∫

U (ρ)U (ρ ′)dρdρ ′ where ρ is the distance between two dif-
ferent particles and ρ ′ is the distance between other different 
particles. From non-linearity one can define the geometry of the 
effective space distribution of interacting particles.

The last coefficient ε = N4π R2
0W represents the energy which 

includes every particle of size R0 through the wetting effect.
The most important contribution to the concentration is asso-

ciated with the field configuration for which the value of the free 
energy (6) is minimum, i.e.,

�ϕ − d�

dϕ
= 0 (8)

where the potential � is

� = −1

2
μ2ϕ2 + 1

4
λϕ4 − εϕ. (9)

When the difference of the minimum of the effective potential 
values is greater than the barrier height, the free energy can be 
written as

	F = 2π

∞∫
0

r2dr

{
1

2

(
dϕ

dr

)2

+ �(ϕ)

}
= −4π

3
r3ε + 4πr2σ

(10)

where σ is the surface energy of the cluster boundary that is 
equal to the free energy corresponded to the solution of the one-
dimensional problem [18,27], i.e.,

σ =
∞∫

0

dr

{
3

2

(
dϕ

dr

)2

+ �(ϕ)

}
=

∞∫
0

dϕ
√

2�(ϕ). (11)

The formation of each particle distribution in condensed matter 
induces an individual effective space which does not occur in the 
Euclidean case. The effective space can be observed through the 
curvature, torsion and probable realization of the topologies with 
arbitrary-order symmetries (including fifth, seventh etc.). Symme-
try and topological properties of the effective space are determined 
first of all by the peculiarities of the interaction in the system. It 
is clear that the problem becomes much more complicated, never-
theless the way to solve it still exists. The idea is associated with 
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