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In this paper we propose measurement induced nonlocality (MIN) using a metric based on fidelity to 
capture global nonlocal effect of a quantum state due to locally invariant projective measurements. This 
quantity is a remedy for local ancilla problem in the original definition of MIN. We present an analytical 
expression of the proposed version of MIN for pure bipartite state and 2 ×n dimensional mixed state. We 
also provide an upper bound of the MIN for general mixed state. Finally, we compare this quantity with 
MINs based on Hilbert–Schmidt norm and skew information for higher dimensional Werner and isotropic 
states.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

One of the most counter-intuitive features of quantum mechan-
ics is its nonlocal nature, which leads to fundamental departure 
from classical physics. Over the years, investigation on nonlocal-
ity of a quantum system has been centered around entanglement, 
non-classical correlation between different parts of a composite 
system – a valuable resource for various information processing 
task [1–5]. Since the pioneering work of Bell [6], entanglement 
is believed to be the only manifestation of quantum nonlocality. 
In other words, entangled states are beyond the purview of local 
hidden variable model and hence violate Bell’s inequality. Further 
exploration of composite system revealed the intriguing complex-
ity in quantum states. In particular, Werner showed that while all 
pure entangled states violate Bell’s inequality, all mixed entangled 
states do not violate the inequality [7]. This is attributed to the 
presence of noise or mixedness, which are responsible in destroy-
ing nonlocal correlation between different parts of the composite 
system, and hence some of the mixed entangled states behave lo-
cally [8]. It is now broadly accepted that entanglement is not the 
complete manifestation of nonlocality.

In light of this, better quantification of quantum nonlocality 
is instructive to reveal the complexity of composite states. Re-
cently, Luo and Fu presented a new measure of nonlocality for 
bipartite system in the perspective of measurements, termed as 
measurement induced nonlocality (MIN) [9]. This quantity is in 
a sense complementary to the geometric measure of quantum 
discord [10–12]. In other words, MIN can quantify the nonlo-
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cal resource in quantum communication protocols involving local 
measurement. It is worth noting that pre- and post-measurement 
states and found to be useful in some of the information process-
ing like quantum dense coding, remote state control and quantum 
state steering [13–18].

MIN characterizes nonlocality of a quantum state in the per-
spective of locally invariant projective measurements, and hence 
more general than the Bell nonlocality. One important merit of 
this quantity is that it can be evaluated analytically for any 2 ×
n-dimensional state. However, there is a problem with this ge-
ometric (Hilbert–Schmidt norm) MIN that it may change rather 
arbitrarily through some trivial and uncorrelated action of the un-
measured party – local ancilla problem. As shown elsewhere [19], 
this issue can be resolved by replacing density matrix with its 
square root. MIN has also been investigated based on relative en-
tropy [20], von Neumann entropy [21], skew information [22] and 
trace distance [23]. Further, MIN has been investigated for bound 
entangled states [24], general bipartite system [25] and Heisenberg 
spin chains [26,27]. The dynamics and monogamy of measurement 
induced nonlocality also has been studied [28,29].

In this article, we propose the MIN based on fidelity induced 
metric. It is shown that this quantity is remedying the local ancilla 
problem associated with the geometric MIN and also easy to mea-
sure. We derive an analytical expression of fidelity based MIN for 
pure state, which coincides with the geometric MIN (discord). Fur-
ther, we provide an upper bound for arbitrary m × n dimensional 
mixed state and a closed formula for 2 × n dimensional mixed 
state. The new version of MIN is also shown to be consistent with 
other forms of MIN for two well-known families of states, namely 
Werner and isotropic states.
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2. MIN based on fidelity

Fidelity is a measure of closeness between two arbitrary states 
ρ and σ , defined as F (ρ, σ) = (

tr
√√

ρσ
√

ρ
)2

[30]. This mea-
sure has been explored in various context of quantum informa-
tion processing such as cloning [31], teleportation [32], quantum 
state tomography [33], quantum chaos [34] and spotlighting phase 
transition in physical systems [35]. Though fidelity itself is not a 
metric, one can define a metric D(ρ, σ) = �(F (ρ, σ)), where �
is a monotonically decreasing function of F , and is required to 
satisfy all the axioms of distance measure. Few such fidelity in-
duced metrics are Bures angle A(ρ, σ) = arccos

√
F (ρ,σ ), Bures 

metric B(ρ, σ) = (
2 − 2

√
F (ρ,σ )

)1/2
and sine metric C(ρ, σ) =√

1 − F (ρ,σ ) [36].
Since the computation of fidelity involves square root of density 

matrix, various forms of fidelity have been proposed to ease the 
computation. Here we follow one such form [37]

F(ρ,σ ) = (tr(ρσ ))2

tr(ρ)2tr(σ )2
(1)

to define a metric as C(ρ, σ) = √
1 −F(ρ,σ ).

Let us consider a bipartite quantum state ρ shared by the par-
ties a and b with respective system state spaces Ha and Hb . Defin-
ing MIN in terms of fidelity induced metric as

NF (ρ) = max
�a C2(ρ,�a(ρ)) (2)

where the maximum is taken over the von Neumann projective 
measurement on subsystem a. Here �a(ρ) = ∑

k(�
a
k ⊗1b)ρ(�a

k ⊗
1b), with �a = {�a

k} = {|k〉〈k|} being the projective measurements 
on the subsystem a, which do not change the marginal state ρa

locally i.e., �a(ρa) = ρa . In other words, MIN is defined in terms 
of the fidelity between pre- and post-measurement state. Here we 
list out some interesting properties of the MIN as defined above.

(i) NF (ρ) is non-negative i.e., NF (ρ) ≥ 0 and positive for entan-
gled state.

(ii) NF (ρ) = 0 for any product state ρ = ρa ⊗ ρb and the classi-
cal state in the form ρ = ∑

i pi |i〉〈i| ⊗ ρi with nondegenerate 
marginal state ρa = ∑

i pi |i〉〈i|.
(iii) NF (ρ) is locally unitary invariant in the sense that

NF
(
(U ⊗ V )ρ(U ⊗ V )†

) = NF (ρ) for any unitary operators 
U and V .

(iv) For any pure maximally entangled state NF (ρ) has the maxi-
mal value of 0.5.

(v) NF (ρ) is invariant under the addition of any local ancilla to 
the unmeasured party (proof is given below).

Originally MIN is defined as the square of Hilbert–Schmidt 
norm of difference of pre- and post-measurement state i.e., [9]

N(ρ) = max
�a ‖ρ − �a(ρ)‖2 (3)

where the maximum is taken over all local projective measure-
ments. One problem of this geometric MIN is that it may change 
rather arbitrarily through some trivial and uncorrelated action on 
the unmeasured party b. This arises from appending an uncor-
related ancilla c and regarding the state ρa:bc = ρab ⊗ ρc as a 
bipartite state with the partition a : bc; then

N(ρa:bc) = N(ρab)tr(ρc)2

implying that MIN differs arbitrarily due to local ancilla c as long 
as ρc is mixed. This problem of MIN can be circumvented with 
the fidelity based MIN as defined in eq. (2). After the addition of 
local ancilla the fidelity between the pre- and post-measurement 
state is

F
(
ρa:bc,�a(ρa:bc)

)
= F

(
ρab ⊗ ρc,�a(ρab) ⊗ ρc

)
.

Using multiplicativity property of fidelity [30],

F
(
ρa:bc,�a(ρa:bc)

)
= F

(
ρab,�a(ρab)

)
·F(ρc,ρc)

= F
(
ρab,�a(ρab)

)
resulting the property (v) of the fidelity based MIN. Hence NF (ρ)

is a good measure of nonlocality or quantumness in a given sys-
tem.

3. MIN for pure state

Theorem 1. For any pure bipartite state with Schmidt decomposition 
|�〉 = ∑

i

√
λi|αi〉 ⊗ |βi〉,

NF (|�〉〈�|) = 1 −
∑

i

λ2
i . (4)

The proof is as follows. The von Neumann projective measure-
ment on party a is expressed as �a = {�a

k} = {U |αk〉〈αk|U †} for 
any unitary operator U . The projective measurements do not alter 
the marginal states i.e., 

(
�a(ρa) = ∑

k �a
kρ

a�a
k = ρa

)
. In general,

ρa =
∑

k

U |αk〉〈αk|U †ρaU |αk〉〈αk|U †.

This marginal state ρa can be written as spectral decomposition in 
the orthonormal bases {U |αk〉} as

ρa =
∑

k

〈αk|U †ρaU |αk〉U |αk〉〈αk|U † (5)

where 〈αk|U †ρaU |αk〉 = λk , the eigenvalues of ρa . Since ρ =
|�〉〈�| = ∑

i j

√
λiλ j |αi〉〈α j | ⊗|βi〉〈β j |, �a(ρ) = ∑

k(�
a
k ⊗1)ρ(�a

k ⊗
1) becomes

�a(ρ)

=
∑

k

∑
i j

√
λiλ j〈αk|U †|αi〉〈α j|U |αk〉U |αk〉〈αk|U † ⊗ |βi〉〈β j|.

Since ρ is pure, the fidelity between pre- and post-measurement 
state is as,

F(ρ,�a(ρ))

=
∑

ii′, j j′

√
λiλ

′
iλ jλ

′
j

∑
k

〈αk|U †|α j〉〈α j′ |U |αk〉〈αi′ |U |αk〉〈αk|U †|αi〉

⊗ 〈βi′ |β j〉〈β j′ |βi〉.
After a straight forward calculation, the fidelity between the 

pre- and post-measurement state is given by

F(ρ,�a(ρ)) =
∑

k

(
〈αk|U †ρaU |αk〉

)2
.

Then, the fidelity based MIN can be written as,

NF (|�〉〈�|) = 1 − min
�a

∑
k

(
〈αk|U †ρaU |αk〉

)2

where the optimization is over all possible projective measure-
ments. Since the term in the summation is the square of eigen-
values of ρa , we have

NF (|�〉〈�|) = 1 −
∑

k

λ2
k

which is identical with the MIN based on Hilbert–Schmidt norm 
and skew information.
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