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We show that for any von Neumann measurement, we can construct a logically reversible measurement 
such that Shannon entropies and quantum discords induced by the two measurements have compact 
connections. In particular, we prove that quantum discord for the logically reversible measurement is 
never less than that for the von Neumann measurement.

© 2017 Published by Elsevier B.V.

1. Introduction

Measurement, as envisaged, plays an inevitable role in quantum 
mechanics, and lies at the heart of “interpretational problem” of 
quantum mechanics. Nonetheless, different views of measurement 
almost universally agree on the measurement outcomes. A quan-
tum measurement is described in terms of a complete set of pos-
itive operators for the system to be measured. A few examples of 
quantum measurement are von Neumann measurement [1] which 
consists of orthogonal projectors, positive-operator-valued measure 
(POVM) [2], unitarily reversible measurement [3,4], etc. The most 
general type of measurement that can be performed on a quan-
tum system is known as a generalized measurement [5,6]. Any 
measurement on a quantum state is inherently associated with 
wave function collapse and probability distribution. We recollect 
the necessary preliminaries briefly below.

Quantum measurements Let H be a finite dimensional complex 
Hilbert space, which represents some quantum system. The set 
of quantum states ρ on H is denoted by D(H). A quantum mea-
surement on H is a set � ≡ {�x}x∈X ⊆ L (H) of positive operators 
indexed by x ∈ X and satisfies 

∑
x �x = 1H . Given a quantum state 

ρ ∈ D(H) and a quantum measurement � = {�x}x∈X , then a prob-
ability distribution p = {p(x)}x∈X is induced where p(x) = T r(�xρ)
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is the probability of the outcome x to occur. In this case, ρ is trans-

formed into the quantum state ρx = Axρ A†
x

p(x) , where �x = A†
x Ax . If 

� = {�x}x∈X is a set of orthogonal projectors, then the measure-
ment {�x}x∈X is said to be a von Neumann measurement [1]. The 
celebrated Neumark extension theorem [7,8] states that each quan-
tum measurement can be seen as a von Neumann measurement on 
a larger Hilbert space [9].

We know that in a generalized measurement process, the input 
state ρ cannot always be retrieved with a nonzero success prob-
ability by a “reversing operation” on the state ρx. A measurement 
{�x}x∈X is called logically reversible [10] if the premeasurement 
state ρ of the measured system is uniquely determined from the 
postmeasurement state ρx and the outcome of the measurement. 
Ueda et al. in Ref. [10] have shown that the measurement {�x}x∈X

is logically reversible if and only if each measurement operator �x

is a reversible operator. Moreover, if for each measurement opera-
tor �x , there exists a unitary operator Ux such that

UxρxU †
x = ρ, (1.1)

for each state ρ whose support lies on a subspace M of H, 
then {�x}x∈X is called the unitarily reversible measurement [4]. It 
is clear that any von Neumann measurement {�x}x∈X is not logi-
cally reversible except X has only a single element. Note that in a 
logically reversible measurement, the system’s information is pre-
served during the measurement process. Thus, the reversibility of a 
measurement is related to the information gained from that mea-
surement. Quantum teleportation [11] can be seen as the problem 
of reversing a set of quantum operations [4].
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Suppose we are given a logically reversible measurement �u =
{�u,x}x∈X . Since each measurement operator �u,x is a positive (re-
versible) operator, then, by the spectral decomposition theorem,

�u,x =
∑
i∈�x

ax(i)�x(i), (1.2)

where 
∑

i∈�x
�x(i) = 1H and ax(i) > 0 for any i ∈ �x . In partic-

ular, if for all x ∈ X there exist subsets {is}mx
s=1 ⊆ �x such that ∑mx

s=1 �x(is) are the same projector onto a subspace M and 
ax(i1) = · · · = ax(imx ), then the measurement �u is also a unitarily 
reversible on the subspace M [4].

The success probability ps of reversing, after the measurement 
with result x, has the upper bound [12,13]

ps ≤ mini∈�x{ax(i)}
pu(x)

, (1.3)

where pu(x) = T r(�u,xρ). If we define the total success probability
ptotal

s of reversing as

ptotal
s =

∑
x∈X

pu(x)ps, (1.4)

then

ptotal
s ≤

∑
x∈X

min
i∈�x

{ax(i)}. (1.5)

Note that the above bound is independent of the quantum state ρ .

Shannon and von Neumann entropies A classical state is described 
by a probability distribution. Shannon entropy H(p), for the proba-
bility distribution p = {p(x)}x∈X , is defined by [14]

H(p) = −
∑
x∈X

p(x) log2 p(x). (1.6)

For a quantum state ρ ∈ D(H), the quantum analog of Shannon 
entropy is von Neumann entropy, and is given by

S(ρ) = −T r(ρ log2 ρ). (1.7)

An equivalent expression of S(ρ) is [7],

S(ρ) = min{|ψa〉,pa} H({pa}), (1.8)

where the minimum is taken over all pure state convex decom-
positions of ρ . A decomposition minimizes {H({pa}) : {|ψa〉, pa}} if 
and only if it is a spectral decomposition of ρ . For an arbitrary 
ensemble {ρi, ηi}, which forms a convex decomposition of ρ , we 
have

S(ρ) ≤ H({ηi}) +
∑

i

ηi S(ρi) (1.9)

The equality is achieved if and only if {ρi} has mutual orthogonal 
supports.

Quantum discord Let HA and HB be (the Hilbert spaces of) two 
quantum systems, ρAB ∈ D(HA ⊗HB) be a quantum state, ρA and 
ρB be the reduced states of ρAB . In quantum information theory, 
quantum mutual information

I A:B(ρAB) = S(ρA) + S(ρB) − S(ρAB), (1.10)

is regarded as a measure of the total correlation [15] between 
HA and HB . With the quantum conditional entropy, S(ρB |ρA) =
S(ρAB) − S(ρA), quantum mutual information becomes

I A:B(ρAB) = S(ρB) − S(ρB |ρA).

Given a von Neumann measurement �A = {�A
x }x∈X on the 

quantum system HA , let us define a conditional entropy on the 
quantum system HB by S B|A(ρAB |{�A

x }) = ∑
x ηx S(ρB|x), where 

ρB|x = η−1
x T rA(�A

x ⊗1HB ρAB) and ηx = T r(�A
x ⊗1HB ρAB). More-

over, we denote by

J vN
B|A(ρAB) = S(ρB) − inf

�A

∑
x

ηx S(ρB|x), (1.11)

which is interpreted as a measure of classical correlation [16,17]
between HA and HB . In general, I A:B(ρAB) and J vN

B|A(ρAB) are dif-
ferent, and the difference between them

DvN
A (ρAB) = I A:B(ρAB) −J vN

B|A(ρAB) (1.12)

= S(ρA) − S(ρAB) + inf
�A

∑
x

ηx S(ρB|x),

is called quantum discord, which is interpreted as a measure 
of quantum correlation [16–18]. It is an important information-
theoretic measure of quantum correlation [19], beyond entangle-
ment measures [20].

Moreover, if we replace the von Neumann measurement in 
(1.12) with the generalized quantum measurement M A = {M A

z }z∈Z
on HA (as described in the Introduction section), then the general 
quantum discord can be defined as follows:

DA(ρAB) = S(ρA) − S(ρAB) + inf
M A

∑
z

ηz S(ρB|z),

where ρB|z = η−1
z T rA(�A

z ⊗1HB ρAB) and ηz = T r(M A
z ⊗�HB

ρAB). 
Clearly, DA(ρAB) ≤ DvN

A (ρAB). Recall that, a purification of ρ ∈
D(HA) is any pure state |φρ〉〈φρ | ∈ D(HA ⊗ HB) such that 
T rB(|φρ〉〈φρ |) = ρ . It, then, follows from Neumark theorem and 
the additivity of von Neumann entropy with respect to tensor 
products, that

DA(ρAB) = DvN
AE (ρAB ⊗ |ε0〉〈ε0|). (1.13)

This paper is organized as follows. Section 2 deals with the con-
struction of a class of logically reversible measurements based on a 
von Neumann measurement, and provides a relationship between 
Shannon entropies of the two measurements. Section 3 presents 
an inequality between quantum discords induced by the two mea-
surements. Conclusion is presented in Section 4.

2. Logically reversible measurements

In this section, we show that it is possible to construct a log-
ically reversible measurement from any given von Neumann mea-
surement, and establish a compact relation between Shannon en-
tropies induced by the two measurements.

Let ρ ∈ D(H) and � = {�x}x∈X be a von Neumann measure-
ment with |X | = n. Now, based on � and any a ∈ (0, 1n ), we can 
construct the following logically reversible measurement �

(a)
u =

{�(a)
u,x}x∈X :

�
(a)
u,x = {1 − (n − 1)a}�x +

∑
y 
=x

a�y . (2.1)

The probability distribution p(a)
u = {p(a)

u (x)}x∈X is induced, and the 
probability p(a)

u (x) of the classical outcome x to occur is given by

p(a)
u (x) = T r(�(a)

u,xρ) = (1 − na)p(x) + a, (2.2)

where p(x) = T r(�xρ). It is easy to show that the measurement 
�

(a)
u is not unitarily reversible on any subspace M with dimM 
=

1 of H. Note that the total success probability of reversing, af-
ter the original von Neumann measurement �, is zero. However, 
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