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We consider a response of nonlinear dynamic systems on random disturbances. A stochastic sensitivity 
of regular and chaotic attractors of discrete systems with parametric noise is studied. Cases of equilibria, 
cycles, one- and multi-band chaotic attractors are considered, and explicit parametric formulas for the 
stochastic sensitivity of these attractors are derived. We give a constructive application of this theory to 
the analysis of the dispersion of random states near chaotic attractors on the example of the logistic map. 
It is shown how this technique can be effectively used in the analysis of noise-induced crisis bifurcation 
of merging chaotic bands.
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1. Introduction

In nonlinear systems, a wide diversity of dynamic regimes 
caused by noise is observed. Even weak random disturbances can 
drastically change system behavior, especially near bifurcation bor-
ders. Here, noise-induced transitions [1–3], stochastic resonance 
[4,5], noise-induced explosions [6,7] and crises [8–10], stochastic 
bifurcations [11,12] should be mentioned. An analysis of the influ-
ence of noise on systems with chaotic attractors is a challenging 
problem considered in a number of papers [13–18]. As a rule, new 
stochastic phenomena are discovered by a direct numerical simu-
lation of the stochastic system solutions. However, the next step 
in studies of the underlying reasons of the found phenomena is 
connected with the development of the analytical approaches, es-
pecially for the parametric investigations.

As the most of noise-induced nonlinear phenomena can be 
explained by the stochastic transitions between deterministic at-
tractors, or their parts, it is highly important to have an analytical 
description of the probabilistic distribution of random states near 
these attractors. An exhaustive description of the probabilistic dis-
tributions is given formally by the corresponding Frobenius–Perron 
equation [19,20] for discrete-time systems, and by the Fokker–
Planck–Kolmogorov equation [21] for continuous systems. How-
ever, it is technically difficult to use them directly. For example, the 
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Frobenius–Perron equation can be solved analytically only in the 
specific one-dimensional examples. In these circumstances, con-
structive asymptotics and approximations are highly relevant [22]. 
Among them, the stochastic sensitivity function technique is used 
[23–25]. For discrete systems, this technique was initially elabo-
rated for regular attractors (equilibria and discrete cycles) [26], and 
later developed for the closed invariant curves [27] and one-band 
chaotic attractors [28]. Note that chaotic attractors with multiple 
bands are typical for one-dimensional maps [29,30,3]. It is known 
that the one-band chaotic attractor is formed as a result of merg-
ing bifurcations of disjoint pieces of multi-band chaotic attractors.

In present paper, we extend the sensitivity function technique 
to the case of discrete systems with multi-band chaotic attractors 
forced by the parametric noise. Generally, an analysis of the pa-
rameter sensitivity is defined as the study of how the output of 
a model can be attributed to the changes of the system parame-
ters. In present paper, we focus on the study of the sensitivity of 
the borders of multi-band chaotic attractors to the variation of the 
noise intensity parameter.

In Section 2, we present a mathematical description of the 
stochastic sensitivity technique for the fixed deterministic solution, 
and give explicit formulas for the stochastic sensitivity of stable 
equilibria and k-cycles.

In Section 3, a theory of the stochastic sensitivity of chaotic at-
tractors is presented. At first, a case of one-band chaotic attractors 
is investigated, and explicit parametric formulas for the stochastic 
sensitivity of borders of these attractors are derived. Based on this 
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theory, we develop the mathematical technique for the stochastic 
sensitivity analysis of multi-band chaotic attractors.

The main points of this theory and abilities of its constructive 
application to the analysis of the dispersion of random states near 
chaotic attractors are demonstrated in Section 4 for the logistic 
map. Here, it is also shown how this technique can be used in 
the parametric analysis of noise-induced crisis bifurcation of merg-
ing chaotic bands. Results of our theoretical analysis are compared 
with the deformation of the probability density functions found by 
the direct numerical simulation.

2. Stochastic sensitivity of regular attractors

We consider a discrete-time one-dimensional nonlinear system

xt+1 = f (xt , ηt), ηt = εξt, (1)

where ξt is an m-dimensional uncorrelated random process with 
parameters Eξt = 0, Eξtξ

�
t = V , V is a covariance m × m-matrix, 

and ε is a scalar parameter of the noise intensity. Note that other 
details of the probability distributions of the acting noise are not 
important.

Consider a solution x̄t of the corresponding deterministic sys-
tem (1) with ε = 0 (x̄t+1 = f (x̄t , 0)). Let xε

t be a solution of the 
stochastic system (1) with the initial condition xε

0 = x̄0. A sensitiv-
ity of the solution x̄t to the random disturbances is defined by the 
variable

zt = ∂xε
t

∂ε

∣∣∣∣
ε=0

= lim
ε→0

xε
t − x̄t

ε
.

Dynamics of the pair (x̄t , zt) is governed by the stochastic exten-
sion system

x̄t+1 = f (x̄t ,0)

zt+1 = ∂ f

∂x
(xt ,0) zt + ∂ f

∂η
(xt,0) ξt ,

∂ f

∂η
=

(
∂ f

∂η1
, . . . ,

∂ f

∂ηm

)
.

(2)

The moments Mt = Ez2
t satisfy the following deterministic system

x̄t+1 = f (x̄t ,0)

Mt+1 = α2(x̄t)Mt + s(x̄t),
(3)

where

α(x) = ∂ f

∂x
(x,0), s(x) = ∂ f

∂η
(x,0) V

∂ f

∂η

�
(x,0).

For the small noise intensity ε, values Mt allow us to approximate 
a dispersion Dt = E(xε

t − x̄t)
2 of the random states xε

t around x̄t :
Dt ≈ ε2Mt .

Using the system (3), one can study the stochastic sensitivity of 
the different types of attractors, both regular and chaotic.

2.1. Stochastic sensitivity of stable equilibria

Consider a case when the exponentially stable equilibrium x̄ is 
an attractor of the deterministic system (1) with ε = 0. Due to 
stability of x̄, it holds that |α(x̄)| < 1, and system (3) for x̄t ≡ x̄ has 
a unique stable stationary solution Mt ≡ M , where

M = s(x̄)

1 − α2(x̄)
. (4)

The value M is called the stochastic sensitivity of the equilibrium x̄.

2.2. Stochastic sensitivity of k-cycles

Let x̄1, . . . , ̄xk be an exponentially stable k-cycle of the de-
terministic system (1) with ε = 0. It holds that x̄t+1 = f (x̄t , 0)

(t = 1, 2, . . . , k −1), x̄1 = f (x̄k, 0). The necessary and sufficient con-
dition of the exponential stability of this k-cycle is |α1 · α2 · . . . ·
αk| < 1, where αt = α(x̄t). Due to cycle’s stability, system (3) has a 
unique stable k-periodic solution Mt satisfying the equation

Mt+1 = α2
t Mt + st, st = s(x̄t). (5)

The set {M1, . . . , Mk} defines the stochastic sensitivity of the 
cycle x̄1, . . . , ̄xk . Here, the element M1 is a solution of the equation

M1 = [α1 · . . . · αk]2 M1 + gk+1, (6)

where gk+1 is found by iterations

gt+1 = α2
t gt + st, t = 1, . . . ,k, g1 = 0.

The rest elements M2, . . . , Mk of the k-periodic solution Mt can be 
found from the equation (5) recurrently.

For the case of the super-stable k-cycle with α1 = ∂ f

∂x
(x̄1, 0) =

0, we have

M2 = s1, M3 = α2
2 s1 + s2, . . . ,

Mk = (α2 · . . . · αk−1)
2s1 + (α2 · . . . · αk−2)

2s2 + . . . + sk−1,

M1 = (α2 · . . . · αk)
2s1 + (α2 · . . . · αk−1)

2s2 + . . . + sk.

3. Stochastic sensitivity of chaotic attractors

Consider a case when the deterministic system (1) with ε = 0
has a chaotic attractor. Here, along with the case of one-band 
chaotic attractors, we will study the stochastic sensitivity of more 
complicated, multi-band chaotic attractors.

3.1. Stochastic sensitivity of the one-band chaotic attractors

First consider a case of the one-band chaotic attractor. This 
means that the chaotic attractor A is a single interval: A = [a, b]. 
Let the function f (x, 0) have a single maximum (see Fig. 1a) at the 
point c ∈ (a, b):

max
[a,b]

f (x,0) = f (c,0),
∂ f

∂x
(c,0) = 0.

One can connect borders a and b of the attractor A with the 
point c:

b = f (c,0), a = f (b,0) = f ( f (c,0),0).

The stochastic sensitivity of the borders a and b of the attrac-
tor A is defined by the stochastic sensitivity of the corresponding 
points of the solution of the deterministic system (1) with ε = 0, 
passing through these borders. The simplest variant of this solu-
tion is x̄t with the initial state x̄1 = c. Indeed, the first iterations 
give us x̄2 = f (x̄1) = b, x̄3 = f (x̄2) = a. Note that the subsequent 
states of this solution belong to the (a, b), and never fall to borders 
x = a and x = b. In these circumstances, the stochastic sensitivity 
of the right border x = b of the attractor A coincides with the 
stochastic sensitivity M2 of the state x̄2 of the considered solution 
x̄t : M(b) = M2. Similarly, for the stochastic sensitivity M(a) of the 
left border, we have M(a) = M3, where M3 is the stochastic sensi-
tivity of M3. It follows from the general system (3) that

M2 = α2
1 M1 + s1, M3 = α2

2 M2 + s2, (7)
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