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Taking account of the road consisting of curved part and straight part, an extended car-following model is 
proposed in this paper. A control signal including the velocity difference between the considered vehicle 
and the vehicle in front is taken into account. The control theory method is applied into analysis of the 
stability condition for the model. Numerical simulations are implemented to prove that the stability of 
the traffic flow strengthens effectively with an increase of the radius of curved road, and the control 
signal can suppress the traffic congestion. The results are in good agree with the theoretical analysis.

© 2017 Published by Elsevier B.V.

1. Introduction

Traffic jams play a great influence on traffic efficiency and en-
ergy economy. In order to alleviate increasingly serious traffic con-
gestion, various traffic models have been built to investigate com-
plex traffic phenomena and reveal the nature of traffic jams by 
many physicists and scholars. In general, traffic flow models [1–15]
have been divided into three types: macroscopic models, micro-
scopic models and mesoscopic models.

Microscopic traffic models [16–25] describe the moving behav-
iors of considered vehicles in detail, and car-following model is an 
representative microscopic model. The original car-following model 
was proposed by Reuschel and Pipes [5] in 1953. Later, Newell [13]
put forward a car-following model described by a differential equa-
tion, which was called the optimal velocity function. But it had an 
obvious shortage that they cannot accurately describe the accelera-
tion in the actual traffic. Bando [25] et al. proposed a car-following 
model named the optimal velocity model (for short, OVM) to over-
come the shortcoming of infinite speed in 1995. The OVM is based 
on the idea that each vehicle has an optimal velocity according to 
the following distance of the preceding vehicle. Afterwards, many 
scholars and scientists extended the model with considering vari-
ous traffic factors [26–31], such as the relative velocity difference 
and slope.

In 2006, Zhao and Gao [36] studied the coupled map car-
following model by means of velocity feedback control. This 
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method is simple and consistent with the reality. In 2007, Han 
[37] et al. presented modified coupled map car-following model 
for traffic flow and discovered that the model can effectively ease 
traffic jams to some degree. Subsequently, Ge [38] pointed out 
that control method can be applied to car-following model for 
congested traffic in 2012. Moreover, A.K. Gupta [39] analyzed the 
effect of feedback control in the lattice hydrodynamic model in 
2015. Recently, although the control method [32–39] has been 
investigated in the coupled map car-following model, the inves-
tigations are few in car-following model.

As is known to all, not all roads are straight in the actual 
traffic situations. Although the highway system can be divided 
into a series of straight roads approximatively, the curved road is 
non-ignorable and can not be approximated as straight road. In 
real traffic flow, it is necessary to consider the effects of straight 
and curved road together. At the present time, there are few re-
searches studying it by use of control method. So we put for-
ward an extended traffic flow model based on the optimal velocity 
model considering the curved road. The effects of straight and 
curved road will be discussed from the viewpoint of control meth-
ods.

The rest of the paper is organized as follows. The extended 
optimal velocity model will be analyzed by control method in 
section 2. In section 3, a control signal will be added into the ex-
tended optimal velocity model and the control method is applied 
into analyzing the stability conditions. In section 4, the numerical 
simulations are made to support the theoretical results with and 
without control signal. The conclusions are given in section 5.
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2. The new extended model and its stability analysis

2.1. The new extended model

The car-following model can describe how vehicles follow one 
after another on a single lane. The typical OVM is presented as

dvn (t)

dt
= a

[
V op (�xn (t)) − vn (t)

]
(1)

where a > 0 is the sensitivity of a driver; xn (t) and vn (t) rep-
resent the position and velocity of the nth vehicle; �xn (t) =
xn+1 (t) − xn (t) means the headway difference between the pre-
ceding vehicle and the following vehicles;

The optimal velocity function V op (�xn (t)) is presented as

V op (�xn (t)) = vmax

2
[tanh (�xn (t) − hc) + tanh (hc)] (2)

where vmax means the maximum velocity, and hc represents the 
safety distance.

Base on the OVM, a modified model is given to describe the 
movement of running vehicles on a curved road section

dṡn (t)

dt
= a

[
V op (�sn (t)) − ṡn (t)

]
(3)

As is well known, the relationship between radius and arc 
length is given as

sn(t) = r · θn(t),�sn(t) = r · �θn(t) (4)

Equation (1) can be rewritten as follows

˙d θn (t)

dt
= a

r

[
V op (�θn (t) · r) − vn (t)

]
(5)

where sn (t) and ṡn (t) are the position and velocity of the nth vehi-
cle on a curved road; �sn (t) = sn+1 (t)− sn (t) means the headway 
difference between the preceding vehicle and the following vehi-
cles on the curved road; θ is the radian and r is the radius of 
the curved road section. Similarly, the optimal velocity function 
V op (�sn (t)) is presented as

V op (r · �θn(t)) = rωmax

2
[tanh (r · �θn(t) − sc) + tanh (sc)] (6)

where sc represents the safety distance on a curved road section; 
ωmax means the maximum angular velocity.

Basing on the central force formula [2], ωmax is bound up with 
the friction coefficient

mω2
maxr = μmg (7)

where μ means friction coefficient; g is acceleration of gravity.
The ωmax is acquired as follow

ωmax =
√

μg

r
(8)

In the real traffic situations the ωmax is less than the theoretical 
result, so a constant coefficient k (0 < k ≤ 1) is introduced and the 
OVM is rewritten as

V op (r · �θn(t)) = k

√
μgr

2
[tanh (r · �θn(t) − sc) + tanh (sc)] (9)

Considering the influence of complex road conditions composed 
of straight and curved roadway, the extended car-following model 
is proposed as follows:

dvn(t)

dt
= a[pV op(�xn(t)) + qV op(r · �θn(t)) − vn(t)] (10)

where p, q (p +q = 1) are the reaction coefficients of straight road 
and curved road condition respectively. When p = 1 and q = 0, the 
proposed model is simplified as OVM.

2.2. Stability analysis

Control method will be applicable to the stability condition of 
the extended car-following model, the dynamic equation is rewrit-
ten as⎧⎪⎪⎨
⎪⎪⎩

dvn(t)
dt = a[pV op(�xn(t)) + qV op(r · �θn(t)) − vn(t)]

d�xn(t)
dt = vn+1 (t) − vn (t)

d�sn(t)
dt = (ωn+1 (t) − ωn (t)) × r = k(vn+1 (t) − vn (t))

(11)

where ωn(t) and ωn+1(t) mean angular velocity of the nth vehicle 
at time t and angular velocity of the n + 1th vehicle at time t;

We suppose that the leading vehicle is not effected by others 
and its velocity keeps steady at v0, then the steady state is given 
by

[
vn (t) �xn (t)

]T =
[

v0 V op−1
(v0)

]T
(12)

[
wn (t) �sn (t)

]T =
[

w0 V op−1
(w0)

]T
(13)

The error system can be calculated around state (5) as
⎧⎪⎪⎨
⎪⎪⎩

dδVn(t)
dt = a[p�xn(t)�1 + qr�θn(t)�2 − δvn(t)]

dδ�xn(t)
dt = δvn+1 (t) − δvn (t)

dδ�sn(t)
dt = k(δvn+1 (t) − δvn (t))

(14)

where δvn (t) = vn (t) − v0, δ�xn (t) = �xn (t) − V op−1
(v0),

δ�sn (t) = �sn (t) − �V op−1
(rw0)

r , partial derivatives �1 =
dV op(�xn(t))

d�xn(t) |
�xn(t)=V op−1

(v0)
, and �2 = dV op(�sn(t))

d�sn(t) |
�sn(t)=V op−1

(w0)
.

Laplace transformation, we get⎧⎪⎨
⎪⎩

S Vn(s) − Vn(0) = ap�Xn(s)�1 + aqr�θn(s)�2 − aVn(s)

S�Xn(s) − �Xn(0) = Vn+1 (s) − Vn (s)

S�Sn(s) − �Sn(0) = k(Vn+1 (s) − Vn (s))

(15)

The matrix formulation of governing equations is given as⎡
⎣ Vn(s)

�Xn(s)
�Sn(s)

⎤
⎦ =

⎡
⎣ s2 ap�1s aq�2s

−s s2 + as + kaq�2 −aq�2

−ks −kap�1 s2 + as + ap�1

⎤
⎦

×
⎡
⎣0

1
k

⎤
⎦ Vn+1(s)

p(s)
(16)

where Vn (s) = L (δvn (t)), �Xn (s) = L (δ�xn (t)), �Sn (s) =
L (δ�sn (t)), L (·) is the Laplace transform, s is a complex variable 
and p (s) = s3 + as2 + (ap�1 + kaq�2)s. Then the transfer function 
can be acquired

G (s) =
⎡
⎣1

0
0

⎤
⎦

⎡
⎣ s2 ap�1s aq�2s

−s s2 + as + kaq�2 −aq�2

−ks −kap�1 s2 + as + ap�1

⎤
⎦

×
⎡
⎣0

1
k

⎤
⎦ 1

p(s)
(17)

Taylor’s formula is applied into G (s) and the result is accurately 
presented as follows:

G (s) = ap�1 + kaq�2

s2 + as + ap�1 + kaq�2
(18)

Based on the stability theory, the traffic jam will never happen 
in the traffic flow system when p (s) is stable and ‖G (s)‖∞ ≤ 1.
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