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1. Introduction

In recent years the authors analyzed several analytical proper-
ties of Quasi-Polynomial (QP) dynamical systems. For example, the 
problem of stability in the sense of Lyapunov [1], was the subject 
of references [2–5]. In [6] integrability properties of QP systems 
were analyzed through associated bi-linear non-associative alge-
bras, and in [7] it was shown that any quasi-polynomial invariant 
of a QP system is related to a similar invariant of a Lotka–Volterra 
(LV) dynamical system. Applications to systems of biological in-
terest was presented in [8]. More recently, in [9] we presented 
a connection between asymptotic stable interior fixed points of 
square (m = n), or isomonomial, QP systems and evolutionary sta-
ble states, a concept of evolutionary games.

The QP systems are defined as follows:

·
xi= li xi + xi

m∑
j=1

Aij

n∏
k=1

x
B jk

k ; i = 1, . . . ,n. (1)

Here xi ∈ �n , with A and B real, constant rectangular matrices 
and m ≥ n is assumed [10]. This class of systems encompass many 
systems of interest [10–12] and was extensively studied in litera-
ture [2–13].
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One interesting property is the possibility to map Eq. (1) into 
a quadratic Lotka–Volterra (LV) system [10]. Define new variables 
Uα , α = 1, . . . , m, satisfying:

xi =
m∏

β=1

U
Diβ
β , (2)

with D an invertible matrix with components Diβ . Now choose 
D = B̃−1, where:

B̃ =

⎡
⎢⎢⎢⎣

B11 B12 · · · B1n b1,n+1 · · · b1,m

B21 B22 · · · B2n b2,n+1 · · · b2,m
...

...
...

...
...

...
...

Bm1 Bm2 · · · Bmn bm,n+1 · · · bm,m

⎤
⎥⎥⎥⎦ . (3)

Parameters b jk are arbitrary provided B̃ is invertible and reasons 
for its introduction can be found in [10–12]. By defining the aux-
iliary variables xk(t = 0) = 1 for k = n + 1, . . . , m, we have that 

Uα = ∏m
i=1 x

D−1
αi

i with D = B̃−1. The variables Uα then satisfy the 
system of equations:

U̇α = (B̃l̃)αUα + Uα

m∑
β=1

(B̃ Ã)αβ Uβ; α = 1, . . . ,m, (4)

which is a quadratic LV type system in the variables Uα . Here
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Ã =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 · · · A1m

A21 A22 · · · A2m

· · · · · · · · · · · ·
An1 An2 · · · Anm

0 0 · · · 0
...

...
...

...

0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

and

l̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l1
l2
...

ln
0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

It is usual to define the m ×m matrix M ≡ B A and λ ≡ Bl. Note 
that:

B A = B̃ Ã, Bl = B̃l̃.

Considering that 
∏m

β=1 U
B̃−1

αβ

β = 1; α = n + 1, . . . , m the dynamics 
of the n dimensional system (1) takes place in a manifold of the 
m ≥ n dimensional LV space. Further details on the properties of 
this mapping can be found in [10–12]. In [12] a generalization is 
presented that encompasses systems not originally in the QP for-
mat.

As shown in the above cited references, the LV canonical for-
mat is useful to analyze analytical properties of QP systems. In 
this paper we extend the results presented in [2–9] by considering 
sufficient conditions for uniformly bounded solutions and perma-
nence of trajectories, which we present in the following section.

2. Permanence and uniformly bounded solutions

Let us consider the criteria for permanence in dynamical sys-
tems. The differential equations ẋi = f i(x1, . . . , xn) is said to be 
permanent if there exists a constant δ > 0 such that, if xi(0) > 0, 
∀i = 1, . . . , n, then lim inft→∞ [xi(t)] > δ, i = 1, . . . , n, where δ does 
not depend on the initial condition xi(0) [14], see also section 12.2, 
[15]. For a permanent system, the boundaries of the phase space 
are repellents. On the other side, systems with bounded solutions 
obey lim supt→∞[xi(t)] ≤ di for some constants di . A permanent 
system is linked to the existence of an Average Lyapunov Func-
tion [15]. We address the question of how the solutions of a QP 
system relates to permanent or bounded solutions in its associated 
LV system. We state the following theorem:

Theorem 1. Considering a LV system with bounded solutions, then the 
following properties hold for the associated QP system:

1. If B̃−1
i j ≥ 0 for all i = 1, . . . , n, the solutions of the corresponding QP 

system are bounded.
2. If B̃−1

i j ≤ 0 for i = 1, . . . , n, the solutions of the corresponding QP 
system are permanent.

Proof. To prove Theorem 1, note that, if the orbits in the LV system 
are bounded then there exists some Ri > 0 such that for all t > 0
and all i we have:

U j(t) ≤ R j, R j > 0 ∀ j = 1, . . . ,m.

If B̃−1
i j ≥ 0 then

U j(t) ≤ R j ⇒ U
B̃−1

i j

j (t) ≤ R
B̃−1

i j

j .

We then have that

xi(t) =
m∏

j=1

U
B−1

i j

j (t) ≤
m∏

j=1

R
B−1

i j

j ≡ �i,

for �i > 0. Thus xi(t) ≤ �i for all t > 0.
On the other hand if B̃−1

i j ≤ 0 we have

U j(t) ≤ R j ⇒ U
B̃−1

i j

j (t) ≥ R
B̃−1

i j

j ,

which implies in

xi(t) =
m∏

j=1

U
B−1

i j

j (t) ≥
m∏

j=1

R
B−1

i j

j = �i .

Thus xi(t) ≥ �i for all t > 0.
It is important to note that, since B̃ is invertible, then in any 

row of B̃−1 there is at least one non-null element, and the in-
equalities used above are always satisfied. This finishes the proof 
of the theorem. �

Permanent LV systems possess a unique interior fixed point and 
(−1)n det M > 0. QP systems with m > n usually are mapped into a 
LV system with det M = det B A = 0 [4,5]. In order to have det M �=
0 we now restrict ourselves here to the case of square QP systems 
(m = n). In this case we have B̃ = B and Ã = A:

Theorem 2. Given a square QP system, if its associated LV system is per-
manent, then:

1. If B−1
i j ≥ 0 for all i = 1, . . . , n, the solutions of the corresponding 

square QP system are permanent.
2. If B−1

i j ≤ 0 for all i = 1, . . . , n, the solutions of the corresponding 
square QP system are bounded.

Proof. Let the solutions of the LV system to be permanent, then 
for every t > 0:

U j(t) ≥ d j, d j > 0 ∀ j = 1, . . . ,n.

If B−1
i j ≥ 0 then

U j(t) ≥ d j ⇒ U
B−1

i j

j (t) ≥ d
B−1

i j

j .

This in turn implies in

xi(t) =
n∏

j=1

U
B−1

i j

j (t) ≥
n∏

j=1

d
B−1

i j

j = δi .

Therefore exists δi > 0 such that xi(t) ≥ δi for all t > 0. When 
B−1

i j ≤ 0 we have

U j(t) ≥ d j ⇒ U
B−1

i j

j (t) ≤ d
B−1

i j

j .

Thus

xi(t) =
n∏

j=1

U
B−1

i j

j (t) ≤
n∏

j=1

d
B−1

i j

j = δi .

Therefore xi(t) ≤ δi for all t > 0 and this finishes the proof. �
According to [15], for a permanent LV system there exists δ > 0

such that δ < lim inft→∞[xi(t)], ∀i. In this case there is also a con-
stant R such that lim supt→∞[xi(t)] ≤ R, ∀i provided (x1, . . . , xn) ∈
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