
Physics Letters A 381 (2017) 2167–2173

Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Boundary condition-selective length dependence of the flexural 
rigidity of microtubules

Jin Zhang a,∗, Chengyuan Wang b,∗
a Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
b Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, Wales SA2 8EN, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 February 2017
Received in revised form 25 April 2017
Accepted 28 April 2017
Available online 4 May 2017
Communicated by R. Wu

Keywords:
Microtubule
Flexural rigidity
Length dependence
Boundary condition

Length-dependent flexural rigidity (FR) is observed experimentally for microtubules (MTs) subjected 
to certain boundary conditions. To shed some light on this unique feature, we have studied the FR 
of MTs with different boundary conditions. A molecular structural mechanics method is employed to 
accurately describe the real boundary conditions imposed on MTs in experiments. Some of component 
protofilaments of MTs are blocked at the ends while others are free. In addition, linked kinesin is treated 
as an elastic body rather than a rigid body. Our simulations show that for relatively long MTs having a 
length comparable to those measured in experiments the length-dependent rigidity is detected only for 
those with fixed–free and fixed–fixed ends, which is consistent with the experimental observation. To 
capture the physics leading to the above phenomenon, Timoshenko beam model is adopted accounting 
for both transverse shear effect (TSE) and imperfect boundary effect (IBE). Comparison between TSE and 
IBE indicates that the boundary condition-selective length-dependence achieved for the FR of relatively 
long MTs is primarily a result of the influence of IBE rather than TSE.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Microtubules (MTs) are protein filaments that exist universally 
in eukaryotic cells. MTs are composed of α- and β-tubulin het-
erodimers [1]. These dimers attach with each other longitudinally 
in a head-to-tail fashion constructing a beam-like protofilament. 
A number of parallel protofilaments are aligned to form an elegant 
chiral MT structure via the lateral interaction between adjacent 
protofilaments. In MTs the adjacent protofilaments are shifted rel-
atively to each other longitudinally, resulting in a helical order in 
the lateral direction. This unique feature is characterised by the 
helix-start number S . Thus, different MT types can be represented 
by the notation of N_S with N being the number of protofilaments 
included in the MT wall. According to the experimental study [2], 
13_3 MTs are the most frequently observed type in vivo. Due to 
the unique molecular structures, MTs play an important role in 
the mechanics of the cell due to their high axial mechanical stiff-
ness and transverse flexibility. For example, MTs are responsible for 
maintaining the cell structural stiffness, functioning as a track for 
motor proteins to transport organelles and facilitating cell division 
[3–5]. The mechanical properties of MTs thus become a current 
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topic of great interest in the areas of cell mechanics and nano-
biomaterials [1]. Specifically, among these properties the flexural 
rigidity (FR) is an important parameter for characterising bend-
ing [6–8], buckling [9–17], vibration [18–24] and wave propagation 
[25–28] of MTs.

In the past two decades, various experimental techniques have 
been employed to measure the FR of MTs, such as optical tweezers 
[29,30], atomic force microscope [6,31], hydrodynamic flow [32,33]
and thermal fluctuations [32,34–37]. To examine the FR of an MT 
in vitro, one can fluctuate a free-standing MT through the thermal 
fluctuation method [36,37] or probe the MT with a direct (pas-
sive or active) force, where different constraints are enforced on 
the ends of the tested MTs [6,31,35,38]. Usually, the ends of MTs 
tested in vitro are covalently grafted on a microstructured substrate 
[6,31,35,38] (see Fig. 1a) or connected to the kinesin molecule, 
whose structure contains a globular head, a stalk-like central re-
gion and a globular end tail [10,39] (see Fig. 1c). Mechanics models 
are thus required for MTs with different end conditions to in-
terpret the experimental data (e.g., buckling force or persistence 
length) and quantify the effective FR. A free-standing MT can be 
typically modelled as an elastic beam with free boundary condi-
tions; an MT attached to the substrate (Fig. 1a) can normally be 
treated as a beam with perfectly clamped boundaries (see Fig. 1b) 
[6,31,35,38]; the one linked to the kinesin (Fig. 1c) is usually de-
scribed as a perfect simply supported beam (see Fig. 1d) [10,39]. In 
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Fig. 1. (a) Atomic schematic and (b) equivalent continuum mechanics model of an 
MT deposited onto the surface of a substrate. (c) Atomic schematic and (d) equiva-
lent continuum mechanics model of an MT linked to kinesin molecules.

Table 1
The boundary condition-selective length dependence of the FR of MTs measured in 
different experiments.

Technique Boundary 
conditions

Length 
dependence

Thermal fluctuation [35]; Laser 
trapping technique [38]

Fixed–free Yes

Atomic force microscope [6,31] Fixed–fixed Yes
Temperature pulse microscopy [10] Pinned–pinned No
Thermal fluctuation [36,37] Free–free No

Table 1 we have summarized the FR of MTs measured by different 
experimental methods. From Table 1 some experiments reported 
the length-dependent FR, while others claimed the constant FR in-
dependent with the contour length. Moreover, the achieved length 
dependence of the FR seems to be sensitive to the boundary con-
ditions of MTs. For instance, the length-dependent FR is found for 
fixed–free and fixed–fixed ends, while the constant FR is achieved 
for pinned–pinned and free–free boundary conditions. This obser-
vation infers a possible correlation between the boundary condi-
tions and the length-dependent FR. Motivated by this idea, we are 
interested in further examining the issue in detail and capturing 
the physical origin of the experimentally observed length depen-
dence of the FR. In the literature, there are three theories proposed 
to explain the length dependence of the FR of MTs: (1) the effect 
of transverse shear deformation proposed for short beams in Tim-
oshenko beam theory [6,20,31,35], (2) the effect of the imperfect 
constrains at MTs’ ends (imperfect boundary conditions) [18,40], 
and (3) the nonlocal effect [8,13–15,25,27]. According to our re-
cent analyses [41,42] the nonlocal effect actually has no effect on 
the mechanics of relatively long MTs. Thus the former two effects 
would be responsible for the length-dependent FR. It thus becomes 
essential in the present study to identify the key factor that con-
trols the length dependence of the FR.

In this paper, the FR of MTs whose ends are free or attached 
to the substrate or linked to kinesin molecules has been studied 
based on the molecular structural mechanics (MSM)-based vibra-
tion analysis. The concept of the MSM method originates from the 
observation of geometric similarities between the coarse-grained 
molecular dynamics (MD) model of MTs and macroscopic space 
frame structures [18,41,42]. As the MSM model ignores the ther-

mal vibration of the atoms, it can economise the computational 
cost. In the meantime, this technique still retains the ability to ac-
count for the effect of the molecular structures on the mechanical 
responses of biomaterials. In the present MSM study the length 
dependence of the FR of MTs is found to be significantly bound-
ary condition-selective, which is similar to the experimental ob-
servation. This phenomenon however cannot be explained by the 
conventional Timoshenko beam model considering the transverse 
shear effect (TSE) only. The general boundary conditions is then 
adopted for Timoshenko beam model, which enables one to quan-
tify both TSE and the imperfect boundary effect (IBE) on the FR.

2. MSM model for the vibrations of MTs

MSM method [18,41,42] will be employed in the present study 
for the vibration analysis of MTs. The robustness and efficiency 
of this technique have been demonstrated in modelling the static 
deformation (tension, torsion and bending) [41], the elastic buck-
ling [42] and the free vibration of MTs [18]. The calculated results 
of Young’s modulus, shear modulus, bending stiffness and critical 
buckling force of MTs are in good agreement with available simula-
tion and experiment results [41,42]. In this work, the MSM method 
will be extended to the vibration of MTs whose ends attached to 
the substrate or linked to kinesin molecules.

2.1. A brief review of MSM method for MTs

In the MSM method, the interactions between two neighbour-
ing constitutive monomers (i.e., αβ bond along the protofilament 
direction and αα or ββ bond along the helical direction) are sim-
ulated as equivalent structural beams with circular cross-sections 
[41]. According to the theory of structural mechanics, only three 
stiffness parameters, i.e., the extensional stiffness Eb Ab , the bend-
ing stiffness Eb Ib , and the torsional stiffness Gb Jb , need to be 
determined for the analysis of the deformation of the MSM model. 
Here, Eb and Gb are, respectively, Young’s modulus and shear mod-
ulus of the beam; Ab , Ib and Jb are, respectively, the area, the 
moment of inertia and the polar inertia of the beam cross-section. 
Based on the energy equivalence between local potential energies 
in computational chemistry and elemental strain energies in struc-
tural mechanics, the extensional stiffness, the bending stiffness and 
the torsional stiffness for an equivalent beam can be determined 
from force field constants in molecular mechanics via the following 
equations Eb Ab = krl, Eb Ib = kφl and Gb Jb = kτ l. Here, kr , kφ and 
kτ are the force constants for bond stretching, bond angle bend-
ing and bond torsion, respectively; l is the length of the equivalent 
beam. The values of these constants are different for αβ along the 
protofilament direction and αα or ββ bond along the helical direc-
tion and can be taken from Ref. [43]. These parameter values have 
been proven to be accurate through a series of MD simulations 
and MSM simulations on the mechanical behaviours of MTs [18,
41–43]. In addition, the mass of each (α or β) tubulin monomer 
mt is taken as 55 kDa [44] and acts at the mass centre of the 
monomer.

After applying the above equivalent beam model to all the 
tubulin–tubulin bonds we will finally turn an MT into a space-
frame structure, where the overall mass matrices M and stiffness 
matrices K of the MSM model are generated based on the mass 
and stiffness of the individual equivalent beams. The equation of 
motion of the MT can then be written as Mẍ + Kx = 0, where ẍ is 
the second time derivative of the displacement x, i.e., the acceler-
ation. This equation of motion further gives the eigenequation as 
(K − ω2M)x = 0, where ω is the angular natural frequency. The 
frequency of an MT can be obtained by solving this eigenvalue 
problem. The calculation was implemented via the block Lanczos 
algorithm [18,45].
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