
JID:PLA AID:24483 /SCO Doctopic: Condensed matter [m5G; v1.215; Prn:9/05/2017; 11:03] P.1 (1-6)

Physics Letters A ••• (••••) •••–•••

Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Engineering electronic states of periodic and quasiperiodic chains 

by buckling

Amrita Mukherjee ∗, Atanu Nandy, Arunava Chakrabarti

Department of Physics, University of Kalyani, Kalyani, West Bengal-741235, India

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 November 2016
Received in revised form 28 April 2017
Accepted 1 May 2017
Available online xxxx
Communicated by R. Wu

Keywords:
Buckling
Multifractality
Quasiperiodicity
Renormalization

The spectrum of spinless, non-interacting electrons on a linear chain that is buckled in a non-uniform, 
quasiperiodic manner is investigated within a tight binding formalism. We have addressed two specific 
cases, viz., a perfectly periodic chain wrinkled in a quasiperiodic Fibonacci pattern, and a quasiperiodic 
Fibonacci chain, where the buckling also takes place in a Fibonacci pattern. The buckling brings distant 
neighbors in the parent chain to close proximity, which is simulated by a tunnel hopping amplitude. 
It is seen that, in the perfectly ordered case, increasing the strength of the tunnel hopping (that is, 
bending the segments more) absolutely continuous density of states is retained towards the edges of the 
band, while the central portion becomes fragmented and host subbands of narrowing widths containing 
extended, current carrying states, and multiple isolated bound states formed as a result of the bending. 
A switching “on” and “off” of the electronic transmission can thus be engineered by buckling. On the 
other hand, in the second example of a quasiperiodic Fibonacci chain, imparting a quasiperiodic buckling 
is found to generate continuous subband(s) destroying the usual multifractality of the energy spectrum. 
We present exact results based on a real space renormalization group analysis, that is corroborated by 
explicit calculation of the two terminal electronic transport.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Localization of single particle quantum states has been an ubiq-
uitous phenomenon, observed primarily as a consequence of dis-
order in a system, and is traditionally called the Anderson lo-
calization [1]. The pivotal result in the field of disorder-induced 
localization is that, the single particle eigenstates of a Hamiltonian 
describing a disordered lattice should be exponentially localized 
for dimension d ≤ 2, and even for d > 2 for strong disorder. The 
effect is strongest in one dimension where all the states are lo-
calized for any strength of disorder. The envelope of the wave 
function decays exponentially with respect to a given location in 
the lattice [2,3]. These results have been aptly justified by various 
calculations related to the localization length [4,5] and the density 
of states [6]. The single parameter scaling hypothesis – its valid-
ity [7], variance [8], or even violation [9,10] in low dimensional 
systems within a tight-binding approximation has also enriched 
the field.
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This picture is to be contrasted with the effect of quasiperiodic 
order [11,12] in one dimensional lattices where the single particle 
excitations are critical and exhibit a power law localization with 
a multifractal character in general [13]. Resistance for such sys-
tems exhibits power law growth as well as the size of the lattice 
increases [14–16]. The exotic spectral properties of quasiperiodic 
lattices occupied an immense volume of literature over the past 
three decades, and even today, the unusual behavior of quantum 
conductance in such systems are of immense interest [17].

In this communication, we revisit the effect of ‘deterministic 
disorder’, introduced in an infinitely long one dimensional chain of 
atomic sites by buckling the chain in local segments, and through-
out its length, following a quasiperiodically ordered sequence. Bent 
quantum wires have been studied previously in the context of 
ballistic transport characteristics [19]. Single and multiply bent 
two dimensional quantum wires were examined in respect of lo-
calized, doubly split one electron states [20]. Apart from these, 
winding chains have been considered as models of conducting 
polymers [21,22]. The winding brings sites that were distant neigh-
bors in the unperturbed system to close proximity, and a tunnel 
hopping provides additional paths for the electron. The lattice be-
comes a topologically disordered (deterministic though) system in 
the spirit of Guinea and Vergés [23], who discussed the effect of 
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fluctuating coordination numbers in a linear chain, caused by dan-
gling branches coupled from a side, or bridging two distant sites in 
a one dimensional lattice. Such tunneling has been shown [21,22]
to have profound influence on quantum transport, leading to large 
localization lengths in disordered polymers, which is indicative of 
a metal-insulator (MI) transition in such systems. Real polymers 
of course, include interaction between different constituent chains, 
the coupling between the adjacent chains being mediated by the 
overlapping hydrogen orbitals. In several cases the main spec-
tral features can be explained by an effective tight binding model 
with next nearest neighbor hopping integrals. The effect of second 
neighbor hopping is also studied for quasi one dimensional organic 
polymer ferromagnetic systems and have unraveled a plethora of 
information [24]. Buckling a chain makes such longer range inter-
actions possible in a natural way, and thus deserves close scrutiny.

In addition, a quasiperiodic order in chains and their bending 
are two important ingredients that have been shown to arise in the 
recent field of two dimensional materials, a graphene nanoribbon 
for example [18]. This provides an extra motivation for studying 
the present model.

We examine two different cases. At first, we consider a per-
fectly periodic chain of atoms within a tight binding approxi-
mation. Buckling is introduced in a Fibonacci quasiperiodic se-
quence [11] such that the chain bends after every n and m atoms, 
the numbers n and m being distributed in a Fibonacci pattern. Tun-
nel hopping is introduced across such clusters and it is seen that 
for large strength of the tunnel hopping amplitude, which may 
be thought to be caused by large bending of the local segments, 
the energy spectrum turns out to be extremely interesting. The 
outer edges of the spectrum retain the character of a pure, one 
dimensional chain of atoms, while the central part, spanning be-
tween E = ε ± 2t , feels the ‘disorder’ and breaks up into multiple 
subbands populated by extended eigenstates as well as sharply lo-
calized bound states. Thus wrinkling the chain appropriately one 
can look into the possibility of a switching action as one sweeps 
the Fermi energy from the domain of absolutely continuous spec-
trum to the fragmented one, mixed with transparent and localized 
states.

In the second example, we consider a quasiperiodic Fibonacci 
chain to begin with. The tunnel hopping, spanning the second 
neighbors, but in a restricted sense, also follows a Fibonacci se-
quence. This introduces a competing quasiperiodic order. The in-
troduction of the tunnel hopping in this case results in something 
totally different. We have encountered several cases where an ap-
propriate choice of the tunnel hopping is seen to generate abso-
lutely continuous subbands in the otherwise fragmented Cantor set 
energy spectrum, typical of a Fibonacci lattice [11] making the sys-
tem conduct over specified energy intervals.

In what follows, we discuss our findings in details. In section 2
we lay down the models and the methods followed. Section 3 con-
tains the results for both the cases addressed here, and in section 4
we draw our conclusions.

2. The model and the method

2.1. The perfectly periodic chain with quasiperiodic buckling

Let us refer to Fig. 1 which shows a linear chain of atomic scat-
terers (violet spheres). The chain is assumed to be buckled after 
every n and m atoms, where we have taken the sequence of n and 
m following a Fibonacci distribution. That is, the chain is inho-
mogeneously distorted and the distorted segments are distributed 
as, na, ma, na, na, ma, ......., where, a is the uniform lattice spac-
ing. This is the typical arrangement of constituents in a binary 
Fibonacci chain comprising of say, two letters L ans S , and grown 
following the algorithm L → L S and S → L [11]. The Hamiltonian 

Fig. 1. (Color online) A one-dimensional chain of atoms with identical quantum dots 
each of having on-site potentials ε and hopping integral t with long range hopping 
λ (blue line) across n-atoms and across m-atoms which follow a Fibonacci sequence, 
as discussed in text. The figure below indicates the renormalized version of the buck-
led ordered chain with restricted long range hopping.

describing the system and written in a tight binding approxima-
tion reads

H = ε
∑

i

|i〉〈i| +
∑

i j

ti j|i〉〈 j| (1)

In this case, ε is the uniform on-site potential describing the par-
ent ordered chain. The hopping integral ti j = t for the nearest 
neighboring sites on the linear backbone, and ti j = λn or λm de-
pending on whether the buckling (shown by the blue line), con-
necting the vertices along the chain and across a segment of n
sites or a segment of m sites. However, in the subsequent discus-
sion, we shall stick to the case where, λn = λm = λ, which shows 
interesting spectral behavior.

Using a set of difference equations

(E − ε)ψi =
∑

i j

ti jψ j (2)

It is simple to reduce the original chain depicted in Fig. 1 to a lin-
ear Fibonacci chain with two kinds of (effective) bonds L and S
(see Fig. 1) which follow a Fibonacci pattern L S LL S L S LL S LL S...... 
This results in three kinds of (effective) on-site potentials namely, 
εα , εβ and εγ , representing vertices flanked by LL, L S or S L bonds. 
The hopping integrals along the effective L or S bonds are desig-
nated by tL and tS respectively. These on-site potentials and the 
hopping integrals are given by

εα = ε + 2t
Un−1(x)

Un(x)

εβ = ε + t

[
Un−1(x)

Un(x)
+ Um−1(x)

Um(x)

]
εγ = εβ

tL = λ + t

Un(x)

tS = λ + t

Um(x)
(3)

Here, x = (E − ε)/2t , and Un(x) is the n-th order Chebyshev poly-
nomial of the second kind. The resulting effective Fibonacci chain 
(Fig. 1(b)) is then further renormalized using the standard deci-
mation procedure, viz., by ‘folding’ it backward using the deflation 
rule L S → L′ and L → S ′ . The recursion relations relating to the 
potentials and the hopping matrix elements at one length scale to 
the next, given by

ε′
α = εγ + t2

L + t2
S

E − εβ

ε′
β = εγ + t2

S

E − εβ

ε′
γ = εα + t2

L

E − εβ
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