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The paper introduces nonadditivity parameter transformation group induced by Tsallis entropy. We 
discuss simple physical applications such as systems in the contact with finite heat bath or systems 
with temperature fluctuations. With help of the transformation, it is possible to introduce generalized 
distributive rule in q-deformed algebra. We focus on MaxEnt distributions of Tsallis entropy with rescaled 
nonadditivity parameter under escort energy constraints. We show that each group element corresponds 
to one class of q-deformed distributions. Finally, we briefly discuss the application of the transformation 
to Jizba–Arimitsu hybrid entropy and its connection to Average Hybrid entropy.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Nonadditive thermodynamics is a concept generalizing ordinary 
additive Boltzman–Gibbs statistical physics based on Shannon en-
tropy [1]. The first additive generalization of Shannon entropy was 
discovered by Rényi [2], who showed that the solution of additive 
Khichin axioms is the one-parametric class of entropies, including 
Shannon entropy as a special case. The first nonadditive entropy 
was described by Tsallis [3] and its axiomatic definition was dis-
cussed e.g. in [4]. Interestingly, the same entropy functional had 
been discussed before by Havrda and Charvát in connection with 
information theory [5]. Since that, there have been introduced 
many other generalizations of Shanonn entropy [6–9]. Addition-
ally, there were done several successful classifications of general-
ized entropies taking into account different aspects of generalized 
statistics [10–14]. On the other hand, Tsallis entropy represents 
the most popular example of nonadditive entropy with many ap-
plications in statistical physics [15–19], abstract algebra [20–22], 
information theory [23,24] or statistics [25].

In recent years, several attempts on mixing of additivity 
and nonadditivity effects were studied. To these effects belong 
crossover between ordinary Gaussian distributions and q-Gaus-
sian distributions [26,27]. We focus on situations, when a system 
is described by Tsallis entropy, but the strength of nonadditivity 
can change. This situation can be represented by a simple ex-
ample of a system in contact with finite heat bath [15,16] with 
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rescaled number of particles in the bath or a system with tem-
perature fluctuations [28,29]. More generally, this corresponds to 
the situation when we have a system with polynomially grow-
ing state space [10,30] and shift its characteristic scaling exponent. 
Rescaling of nonadditivity parameter brings about some non-trivial 
consequences which are also discussed in this paper. The rest of 
the paper is organized as follows: section 2 defines the transfor-
mation group of nonadditivity parameter and discusses its main 
properties. Section 3 discusses simple physical applications of the 
transform. Section 4 describes applications in q-deformed algebra 
and presents generalized distributive laws. In section 5 are cal-
culated MaxEnt distributions (obtained from Maximum entropy 
procedure) corresponding to Tsallis entropy with rescaled non-
additivity parameter under escort energy constraints. Section 6
discusses the connection of the transformation to Jizba–Arimitsu 
hybrid entropy, which follows q-additivity rule for independent 
events, similarly to Tsallis entropy. The last section is devoted to 
conclusions.

2. Rescaling of Tsallis nonadditivity parameter

Nonadditive statistical physics has been first described by Tsal-
lis [3]. He introduced the generalized entropy functional

Sq(P ) =
∑

i pq
i − 1

1 − q
(1)

where q plays the role of nonadditivity parameter. For q = 1 the 
entropy becomes additive Shannon entropy. The nonadditivity of 
Tsallis entropy is for independent events A, B expressed by the 
axiom
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Sq(P A∪B) = Sq(P A) + Sq(P B) + (1 − q)Sq(P A)Sq(P B) (2)

where P A is the probability distribution corresponding to A, and 
similarly with B . One of the possible sources of nonadditivity can 
arise from the fact that a system is in contact with a finite heat 
bath. In this case, it is possible show that for a bath consisting of 
N particles the nonadditivity parameter is defined as q(N) = N

N−1
[15,16], and the state space grows polynomially. The polynomial 
growth of states is typical for systems described by Tsallis entropy, 
because the entropy is extensive for these systems [10]. This is 
typical for systems where a fraction of states is frozen [30]. The 
important question is what happens with the system when we 
change the strength of non-additive interaction. This means that 
we rescale the nonadditivity term in Eq. (11), i.e. we replace (1 −q)

by (q − 1)/α for some α > 0. In this case, we get a new nonaddi-
tivity parameter qα , which is defined by the relation

(qα − 1) = q − 1

α
⇒ qα = q + α − 1

α
. (3)

Interestingly, this class of nonadditivity parameter transformations 
conforms a one-dimensional group. It is straightforward to show 
the main properties of the group, which are

• composition rule: (qα)β = (qβ)α = qα·β
• associativity: (qα)β·γ = (qα·β)γ = qα·β·γ
• neutral element: q1 = q
• transformation invariant: 1α ≡ 1.

Naturally, it is possible to think about extension of the trans-
form beyond the region α > 0. Actually, the region α > 0 rescales 
the distance of q from 1, but does not change the sign of (1 − q). 
It means that the transform keeps qα > 1 for q > 1 and vice versa. 
Because of multiplicative properties of the transform, the most im-
portant is the extension to α = −1. With this, we get

q−1 = q − 1 − 1

−1
= 2 − q (4)

which is the well-known additive duality of Tsallis entropy. Un-
fortunately, this transformation can lead to negative values of q−1, 
which is usually unwanted because Tsallis entropy for negative val-
ues of q does not fulfill Kolmogorov axioms defined by Abe [4]. 
This can be overcome by assuming only q ∈ [0, 2].

It is also possible to obtain the multiplicative duality, when we 
allow q-dependent transformation α(q). In this case, we simply 
choose α(q) = −q, which results into

q−q = q − q − 1

−q
= 1/q . (5)

Both additive and multiplicative dualities have been recently dis-
cussed e.g. in Ref. [31].

3. Applications of Tsallis parameter transformation in 
thermostatistics

In order to understand the physical interpretation of the trans-
formation Sq → Sqα , let us focus on the case of finite heat bath. 
For this system is

q(N)α = q(N) + α − 1

α
= N + (α − 1)(N − 1)

α(N − 1)

= α(N − 1) + 1

α(N − 1)
. (6)

Therefore, parameter qα corresponds to a system in contact with 
a finite heat bath consisting of Nα = α(N − 1) + 1 particles, from 
which we get that

(Nα − 1) = α(N − 1). (7)

Thus, transformation q → qα corresponds to rescaling the number 
of particles in the bath. Generally, the transform describes the shift 
between classes of Tsallis q-additivity. For the case of finite heat 
bath, we always have q(N)α > 1 for α > 0.

Rescaling the number of particles in the finite heat bath is one 
of the physical applications of the nonadditivity parameter trans-
formation. On the other hand, it is possible to find a nice physical 
interpretation of the transformation for systems with tempera-
ture fluctuations. Such systems have been investigated by Beck in 
Ref. [28] followed by several other authors. In a general system in 
contact with a heat bath with temperature fluctuations it is possi-
ble to express the non-additivity parameter q as [29]

q = 1 − 1

C
+ �β2

〈β〉2
(8)

where C is the heat capacity of the reservoir and �β2

〈β〉2 is the rel-

ative temperature fluctuation. Let us note for the case of finite 
heat reservoir discussed in the previous section, the heat capac-
ity is negative, as discussed e.g. in Ref. [32]. On the other hand, 
for positive heat capacity, it is possible to reach the region q < 1
and q = 1 determines 1√

C
= �β

〈β〉 . For systems, with large fluctua-

tions, i.e. �β2

〈β〉2 � 1
C , we can neglect 1/C . Then, for the system with 

rescaled nonadditivity parameter qα , we have

�β2
α

〈βα〉2
= qα − 1 = q − 1

α
= 1

α

�β2

〈β〉2
. (9)

Thus, rescaling the nonadditivity parameter also rescales the rela-
tive fluctuations in the system.

Finally, a nice application of the nonadditivity parameter trans-
formation is the quasi-additivity rule for Tsallis entropy for q close 
to one [28]. In this case, it is possible to make the expansion of ∑

i = pq
i as∑

i

pq
i =

∑
i

pie
(q−1) log pi = 1 + (q − 1)

∑
i

pi log pi

+ (q − 1)2

2

∑
i

pi(log pi)
2 + . . . (10)

In this approximation it is possible to find a quasi-additivity rule 
for Tsallis entropy, which can be expressed as

Sq(P A) + Sq(P B) = Sqα (P A∪B) (11)

with appropriate α. For A = B , the left-hand side is equal to

2Sq(P A) = 2

q − 1

(
1 −

∑
i

pq
i

)

= −2
∑

i

pi log pi − (q − 1)
∑

i

pi(log pi)
2 + . . . (12)

while the right-hand side can be expressed as

Sqα (P A2) = 1

qα − 1
(1 −

∑
i j

pqα

i j ) = 1

qα − 1
(1 − (

∑
i

pqα

i )2)

= −2
∑

i

pi log pi

− (qα − 1)

[
(
∑

i

pi log pi)
2 +

∑
i

pi(log pi)
2

]

+ . . . (13)
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