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Complex systems as networks always exhibit strong regularities, implying underlying mechanisms 
governing their evolution. In addition to the degree preference, the similarity has been argued to be 
another driver for networks. Assuming a network is randomly organised without similarity preference, 
the present paper studies the expected number of common neighbours between vertices. A symmetrical 
similarity index is accordingly developed by removing such expected number from the observed common 
neighbours. The developed index can not only describe the similarities between vertices, but also the 
dissimilarities. We further apply the proposed index to measure of the influence of similarity on the 
wring patterns of networks. Fifteen empirical networks as well as artificial networks are examined in 
terms of similarity intensity and degree heterogeneity. Results on real networks indicate that, social 
networks are strongly governed by the similarity as well as the degree preference, while the biological 
networks and infrastructure networks show no apparent similarity governance. Particularly, classical 
network models, such as the Barabási–Albert model, the Erdös–Rényi model and the Ring Lattice, cannot 
well describe the social networks in terms of the degree heterogeneity and similarity intensity. The 
findings may shed some light on the modelling and link prediction of different classes of networks.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Networks can efficiently describe a wide range of complex sys-
tems, such as social systems, biological systems and infrastructure 
systems [1–4]. Since most real-world networks are either incom-
plete or evolving, to understand the dynamics and growing pat-
terns of networks has attracted increasing attentions [5–11].

The degree preference has been considered as the key attrac-
tiveness driving the evolution of networks [12–15] since the find-
ing of scaling phenomena [16]. However, real networks are also 
found to be highly clustered [17] and with dense community struc-
ture [18,19] which cannot be explained by the preferential at-
tachment mechanism alone. Accordingly, vertex similarity is also 
argued to be a driver for networks [20] and has been applied to 
study the formation and evolution of different networks [21–24]. 
While the ground-truth similarities among vertices are mostly un-
known, a number of similarity indices have been developed by 
evaluating either the adjacency matrix or the common neighbour 
structure of the network [25–29]. Normally, the vertices that share 
the same neighbours (adjacent vertices) are considered to be sim-
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ilar to each other. However, the similarities quantified by these 
indices mostly have systematic bias regarding the vertex degree 
[6,26,30] that hub vertices tend to have more common neighbours 
with others due to their rich connectivities. As a consequence, 
it is difficult to determine whether the common neighbours are 
due to the similarity between vertices or just random mechanism. 
Additionally, most indices give only positive values without an in-
dication of neutral similarity. Even with a same similarity value, 
the meaning would be different in different scenarios such as the 
degrees of the measured vertices and the degree distribution of the 
given network. For example, two vertices α and β having 5 com-
mon neighbours could indicate that they are extremely similar to 
each other if their degrees are kα = kβ = 5, but could also be in-
terpreted as extremely dissimilar if their degrees kα ≈ N, kβ ≈ N
where N is the network size, because they are expected to have 
a lot more common neighbours. Therefore, the key question needs 
to be answered is that how many common neighbours two partic-
ular vertices are expected to share in a given network. Finally, to 
what extent does the similarity shape the structure and evolution 
of a given network is still an open question due to the lack of an 
unbiased and symmetrical similarity index.

In this paper we study the expected number of common neigh-
bours between two vertices which is shown to be determined by 
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Fig. 1. (Colour online.) Illustration of the random rewiring. Each vertex v in the 
network has kv half-edges to be paired with others’ and each pair of half-edges has 
equal chance to be connected. Obviously, vertices with more half-edges are more 
likely to be connected to each other.

the degree heterogeneity of the network. A vertex similarity in-
dex is thereby proposed by comparing the number of common 
neighbours with the expected number so that the random factors 
are removed. We further define the similarity intensity to quantify 
the governance of similarity in complex networks as the average 
similarity over all the connected vertex pairs in the network. The 
similarity intensities and degree heterogeneities of fifteen real net-
works are investigated and the social networks are found to be a 
special class which has both high degree heterogeneity and simi-
larity intensity.

2. A balanced vertex similarity index

The vertices that share common neighbours are usually consid-
ered to be similar to each other. However, two vertices x and y
that are not similar to each other at all, especially these with large 
degrees, could still have common neighbours by chance. For exam-
ple, in a network of 10 vertices, x and y with degrees kx = ky = 6
should have at least 3 common neighbours, but having 3 common 
neighbours does not mean that they are similar. In other words, 
every pair of vertices x and y with no similarity are expected to 
have a certain amount of common neighbours nexp

xy due to pure 
random mechanism. In a given network, if the observed number of 
common neighbours nxy = nexp

xy , we can consider these two vertices 
x and y to be neutral to each other. Accordingly, the difference be-
tween the observed and expected number of common neighbours 
nxy −nexp

xy can be used to describe the tendency of x and y to con-
nect the same vertices, which we argue is a more meaningful way 
to represent their similarity. Therefore, we calculate the expected 
number of common neighbours between two vertices with given 
degrees in a given network, so that we can remove the random-
caused common neighbours from the observed number to estimate 
their similarity.

Consider a network consisting of a set of N vertices V = {v1,

v2, · · · , v N}, and a set of M edges E = {e1, e2, · · · , eM}. The ex-
pected number of common neighbours between two vertices can 
be calculated by considering a random rewiring process of a net-
work. Assume all the edges are broken into two half-edges (stubs) 
and thus each vertex v has kv half-edges to be paired again with 
others as shown in Fig. 1. This process is normally referred as the 
configuration model [2,31] which generates random networks with 
a given degree sequence. In the rewiring process of the present 
paper, for each of v ’s half-edges, the paired half-edge is chosen 
randomly but from another vertex that has not been connected 
by v to avoid multi edges or self-loops. Therefore, the probability 
of the paired half-edge coming form vertex j is k j/ 

∑
v kv . Con-

sidering all the ki edges that vertex i possessing, we have the 
probability of two random vertices i and j connecting with each 
other [32,33],

p(i ↔ j) = kik j∑
v kv

. (1)

Fig. 2. Number of common neighbours between two vertices x and y, nxy versus 
the product of the corresponding vertices’ degrees kxky in BA networks. The dashed 
straight line has a slope of 1 in the log–log plot. The simulated network starts from 
a complete network of m0 = 6 vertices. At each of the following step, one vertex 
is added to the network to connect to m = 5 existing vertices. The probability of 
each vertex being connected is proportional to its current degree, i.e. p(v) ∝ kv . 
Vertices are added continuously until the network size reach N = 104. Considering 
most vertex pairs would have no common neighbour at all in a single realisation 
of network, we average nxy over 104 realisations of the generated BA network. We 
rewire the generated BA network as follows: a) select two from N〈k〉/2 edges uni-
formly at random; b) chose one vertex from each edge and switch if this will not 
result in multi edges or self-loops; c) repeat a) and b) for N〈k〉 times. In such way, 
the degree of each vertex will not be changed and we can average the number of 
common neighbours between two specific vertices accordingly.

Accordingly, the probability of a vertex i being a common neigh-
bour for vertices x and y, i.e. connecting to both x and y, can be 
written as,

p(i ↔ x, y) = ki(ki − 1)

(
∑

v kv)2
· kxky . (2)

Considering all the possible common neighbours, we then have 
the expected number of common neighbours for x and y which 
reads,

nexp
xy =

∑
i

p(i ↔ x, y) =
∑

v kv(kv − 1)

(
∑

v kv)2
· kxky . (3)

Therefore, as suggested by Eq. (3), the neighbourhood size for 
two vertices x and y is expected to have a linear relation with 
the product of their degrees, i.e. nexp

xy ∝ kxky . We test such rela-
tion using the Barabási–Albert (BA) network model [16]. The BA 
model is a random network model in which the edges are attached 
randomly according to the degree preference without predefined 
similarity. Accordingly, the vertices in a BA network are expected 
to be with no similarity and thus we should have nexp

xy = nxy . As 
shown in Fig. 2, the averaged number of common neighbours for 
two vertices x and y has the linear correlation with the product 
kxky as predicted by the Eq. (3).

Actually, one can find that, in Eq. (3), 
∑

v kv can be given by 
the product of the network size and the average degree, N〈k〉. Ac-
cordingly, we have also 

∑
v kv (kv − 1) = N

(〈k2〉 − 〈k〉). Therefore, 
we can rewrite the expression for the expected number of com-
mon neighbours as

nexp
xy = 〈k2〉 − 〈k〉

N〈k〉2
· kxky . (4)

The parameter for the product of the degrees basically describes 
the degree distribution feature of the network. The component 
〈k2〉/〈k〉2 is usually used to described a network’s degree hetero-
geneity H [29,34]. With a unified degree for each vertex, a network 
has 〈k2〉 = 〈k〉2 and thus heterogeneity H = 1. The more heteroge-
neous the network’s degree distribution is, the higher the value H
would generally be. The BA network with the applied settings in 
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