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The effective temperature, which acts as a criterion for thermalization in systems with heat flux, has been 
introduced on the bases of a relatively simple discrete variable model (DVM). The DVM is inherently 
nonlocal and can be used to describe multi-length and -time scale heat conduction including low-
dimensional and sub-continuum regimes. Under far from equilibrium conditions when the heat flux tends 
to its maximum possible value, the effective temperature and the corresponding nonequilibrium entropy 
go to zero, which points to a possible generalization of the third law in nonequilibrium situations.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The conceptual problems of the definition and measurement 
of temperature in nonequilibrium states, particularly in sub-
continuum regimes, attract great attention due to the increas-
ing interest in thermodynamic theories beyond local equilibrium 
[1–10], in glassy systems [11], in molecular dynamic simulations 
[8,12–14], in active matter and biological systems [15,16], in the 
context of the issue of global warming [17], and in technologi-
cal applications of nanoscale systems and material sciences [8,12,
18–21]. Several approaches have been used to model the tempera-
ture evolution under local nonequilibrium conditions starting from 
both thermodynamic and microscopic bases [1–24], but still a sat-
isfactory definition of the nonequilibrium temperature is an open 
problem [1,2,12–15,18–21]. Moreover, most of the approaches are 
usually cumbersome and numerical methods are needed to ob-
tain their solutions. Thus, looking for simpler phenomenological 
equations leading to reasonable predictions may be useful from 
the practical point of view as they offer a preliminary approach, 
which may be refined later by means of cumbersome but more 
precise methods. One of such approaches is the discrete variable 
model (DVM) [9,10,22–27], which discretizes the space and time 
by defining lattice sites of a characteristic size h where the heat 
carrier temperature (or energy density) is calculated in discrete in-
tervals of time τ . The idea to describe the heat conduction with 
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space–time discrete variables is closely related to the concept of 
random walks and lattice Boltzmann method (see [28–31] and ref-
erences therein). The characteristic length h is the minimum size 
of the lattice, to which the local temperature T (x, t) can still be 
assigned. The idea of the minimum space scales employed by the 
DVM corresponds to the conclusion of Majumdar [18] that “since 
temperature at a point can be defined only under local thermo-
dynamic equilibrium, a meaningful temperature can be defined 
only at points separated on an average by the phonon mean free 
path”. It is also consistent with the concept of minimum heat-
affected region suggested by Chen [19,20], which assumes that 
during phonon transport from a nanoscale heat source the mini-
mum size of the heat affected region is of the order of the phonon 
mean free path. The DVM successfully describes the nano-scale 
heat conduction in thin films introducing two types of the effec-
tive (size-dependent) thermal conductivity [27]. In this paper the 
DVM is used to introduce and discuss the effective temperature 
and corresponding entropy for far from equilibrium situation.

2. Discrete variable model

In a one-dimensional description (1D), the discrete approach 
gives the heat conduction equation as follows [9,10,22–27]

U (t + τ , x) = 1

2

[
U (t, x + h) + U (t, x − h)

] + Q (t + τ/2, x) (1)

where U (t, x) is the energy of the heat carriers at a lattice site 
(x − h/2, x + h/2) at a time moment t , Q is the external energy 
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source. The discrete formalism implies that the energy exchange 
between the lattice occurs on the border between the neighboring 
lattice, which for the lattices x and x − h is situated at x − h/2. 
Making a coordinate shift x → x + h/2, we can present the heat 
flux q through the plane x, which is the border between lattice 
sites with coordinates x − h/2 and x + h/2, as follows [9,10,22–27]

q(t + τ/2, x) = v

2

[
U (t, x − h/2) − U (t, x + h/2)

]
(2)

where v = h/τ is the heat-carrier (phonon) velocity, which as-
sumed to be frequency-independent (so-called gray approximation 
[30,31]). Strictly speaking, this assumption is valid in the Debye 
approximation, while in a general case there are dispersive effects 
that make v itself depends on the phonon frequency.

Thus, the DVM, Eqs. (1) and (2), reflects the inherent nonlocal-
ity of transfer processes taking into account both time τ and space 
h scales of energy carriers.

3. Effective temperature θ

Let us consider a heat flux q through a plane with coordinate x. 
According to Eq. (2) the heat flux can be expressed as [27]

q(t + τ/2) = v

2
(U1 − U2) (3)

where U1 = U (t, x − h/2) is the energy of the heat carriers, 
which move through the plane x from the left to the right, and 
U2 = U (t, x + h/2) is the energy of the heat carriers, which move 
through the plane x from the right to the left. Now let us refor-
mulate Eq. (3) in terms of temperature. Usually the temperature 
under nonequilibrium condition is defined on the basis of the ki-
netic energy of the particles and is sometimes referred to as the 
kinetic temperature [1,2,12,28]. The kinetic temperatures of the 
heat careers moving in the opposite directions can be defined as 
T1 = U1/C and T2 = U2/C , respectively, where C is the heat ca-
pacity. The corresponding total temperature of the system T is 
an average of the two temperatures T1 and T2: T = (T1 + T2)/2
[28,30,31]. Note that the kinetic temperature of the nonequilibrium 
state T is equal to the equilibrium temperature of the system with 
the same internal energy [28], which is reached by the system af-
ter equilibration under adiabatic conditions. Using these definitions 
of the temperatures and assuming τ � t , Eq. (3) gives

T1 = T + q/C v (4)

T2 = T − q/C v (5)

Analogous equations for the temperatures of the heat carri-
ers moving in the opposite directions arise in the continuum 
approaches based on the random walk model [28,29], the Bose–
Einstein distribution [3], and the Boltzmann transport equation 
[30,31]. If the two groups of the heat carriers with T1 and T2 equi-
librates reversibly, i.e. while producing work, their common final 
temperature will be [17,32]:

θ = (T1T2)
1/2

Indeed, before equilibration the total entropy of the two groups 
is equal to Sneq = kB ln T1 + kB ln T2 = kB ln T1T2 (kB is the Boltz-
mann constant), whereas after equilibration Seq = 2kB ln θ , where 
θ is the common temperature of the groups after equilibration. 
The entropy change during equilibration is �S = Sneq − Seq =
kB ln T1T2/θ

2. When the system equilibrates reversibly, the entropy 
does not change, i.e. �S = 0, which gives that θ is equal to the ge-
ometric mean of the two temperatures T1 and T2 [32].

Multiplying Eq. (4) by Eq. (5), we obtain

θ = T
(
1 − q̂2)1/2

(6)

Fig. 1. Nondimensional effective temperature θ/T (solid line), Eq. (6), and nondi-
mensional entropy S/Seq (dash-dotted line), Eq. (10), as functions of the nondi-
mensional heat flux q/qmax. Nondimensional effective temperature from EIT [1,2]
θE I T /T (dashed line), Eq. (7a), is shown for comparison.

where q̂ = q/C vT is the nondimensional heat flux. Fig. 1 shows 
the effective nondimensional temperature θ/T as a function of the 
nondimensional heat flux q̂ (solid line). In equilibrium q = 0 and 
the effective temperature θ takes its maximum value θmax = T . 
As the absolute value of the heat flux |q| increases, θ decreases 
and reaches zero at the maximum possible value of the heat flux 
q̂max = 1 (see Fig. 1). The maximum heat flux qmax is reached 
when all the heat carriers move in the same direction. The re-
sult that θ → 0 at |q| → qmax is confirmed by heat conduction in 
harmonic chains [1] and in 1D crystal under quantum limit [3]. 
Thus, θ in Eq. (6) depicts deviation from equilibrium and imposes 
a physically reasonable upper bound on the heat flux |q| ≤ qmax

[1,3,8].
For small deviation from equilibrium when |q̂| � 1, a Taylor 

series expansion of Eq. (6) gives

θ = T
(
1 − q̂2/2

)
which corresponds to the effective temperature obtained by Ca-

macho [3] using a maximum entropy formalism in the classical 
limit and by Dong et al. [7] on the basis of the thermomass the-
ory. This expression can be represented in a slightly different form 
as

1

θ
= 1

T
+ q̂2

2θ
(7)

Taking into account that for the small deviation from equilib-
rium θ ≈ T , T in the last term of Eq. (7) can substitute for θ , which 
gives

1

θ
= 1

T
+ q̂2

2T
(7a)

Eq. (7a) corresponds to the effective temperature introduced 
by Extended irreversible thermodynamics (EIT) of Jou et al. [1,2]. 
The EIT goes beyond the local equilibrium assumption and obtains 
generalized heat conduction theory by introducing additional state 
variables, such as heat flux, into the expression of nonequilibrium 
entropy [1,2]. As a result the nonequilibrium temperature θE I T is 
introduced as θE I T = (∂ S/∂e)−1, where e is the local energy den-
sity [1,2].

Fig. 1 shows the effective temperatures given by the present 
model, Eq. (6), and by EIT, Eq. (7a), as functions of the heat flux. As 
it is expected, the two temperatures coincide at a relatively small 
deviation from equilibrium when |q̂| � 1, while at a high devia-
tion from equilibrium when |q̂| ≤ 1, the two temperatures differ 
substantially (compare solid and dashed curves in Fig. 1).
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