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We study the dynamics of a tagged particle that undergoes single-file diffusion in an environment of 
point Brownian particles. Specifically, we examine the effect of the particle density on the well-known 
anomalous sub-diffusion behavior of the tagged particle. We compare two single-file systems; the first 
maintains a fixed average particle density and the second experiences a dilution with time. Both our 
analytical predictions and computational results, that study the time evolution of the mean square 
displacement per particle for both systems, show that the behavior of the tagged particle transforms 
from anomalous sub-diffusive (if the average particle density is kept fixed) to normal if a reduction in 
the average particle density takes place during the diffusion. Our computational results are based on a 
discrete Monte-Carlo technique that captures perfectly the dynamics of the continuum formulation of 
single-file systems.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Particle systems governed by stochastic dynamics and exclusion 
processes have been a research focus [1,2]. An infinite system of 
interacting Brownian particles hopping on a one-dimensional lat-
tice is referred to as single-file dynamics, and it was first solved 
by Harris [3]. In nature, many physical systems are found to obey 
single-file dynamics; such as ion transport through channels in 
biological membranes [4], zeolites in one-dimensional channel sys-
tems [5–7], and super-ionic or organic conductors [8].

Both the ordinary and single-file diffusion properties of the in-
dividual tagged Brownian particles (sometimes referred to as the 
tracer particles) have been a research focus [9–13]. Harris found 
that if the average particle density is kept fixed, the single-file 
diffusion of the tracer particles is anomalous sub-diffusive [3], in 
contradiction to ordinary diffusion, with the tracer particle’s mean 
square displacement growing as time to the one half, �x2 ∝ t1/2, 
and not t , as in ordinary diffusion. Moreover, for a tracer parti-
cle in a finite system, �x2 reaches equilibrium at very large times; 
limt→∞ �x2 = constant [14,15], and the probability-density func-
tion (P D F ) is a Gaussian in position with variance �x2 [3,12,13].

For the vast majority of cases, single-file diffusion has been 
treated in the context of homogeneous initial states, in which the 
particles are mostly equally spaced, with a constant average par-
ticle density [16–27]. The main research focus in this paper is to 
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investigate the effect of the particle density on the anomalous sub-
diffusion behavior and t1/2 dependence of the tracer particles. We 
compare two single-file systems; the first has a homogeneous ini-
tial state and maintains a fixed average particle density with time 
(see Sec. 3), and the second has an inhomogeneous (Gaussian) ini-
tial state (see Sec. 4), where the particle density is maximum near 
the center of the lattice (through which the particles diffuse) and 
minimum near the tails, and experiences a progressive drop in the 
average particle density with time, where the single-file restriction 
directs the diffusion of the individual tagged particles away from 
the crowded center and toward the empty tails.

For both single-file systems considered here we study, both 
analytically and computationally, the time evolution of the mean 
square displacement per particle. Our computational results utilize 
a Monte-Carlo technique that simulates the continuum formulation 
of single-file dynamics (Sec. 2). This technique provides a discrete 
stepwise approach to how single-file systems evolve with time, 
and we will show that it captures perfectly the dynamics of the 
continuum limit.

The role of anomalous diffusion has received attention in litera-
ture to describe many physical processes, most prominently within 
crowded systems; such as ultra-cold atoms in one-dimensional po-
larization optical lattice [28], crowded fluids such as the cytoplasm 
of living cells (where the cytoplasm and nucleoplasm of living 
cells are crowded with a plethora of macromolecules, often render-
ing the diffusion in these intracellular fluids anomalous) [29–32], 
two-dimensional Yukawa liquids [33], protein hydration water [34], 
single-particle movement in cytoplasm [35], worm-like micellar 
solutions [36], and heart-beat intervals and DNA sequences [37]. In 
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Sec. 3 we discuss the anomalous sub-diffusion behavior of single-
file dynamics with a fixed average particle density. Our computa-
tional results confirm once again that the diffusion constant of the 
tracer particles DT is very sensitive to the way the initial state 
is prepared (such as the spacing between neighboring particles), 
as predicted in literature [16–19,27]. We also study the effect of 
the average particle density on the time evolution of �x2. Finally, 
single-file dynamics with a time-variant average particle density 
is studied in detail in Sec. 4. Note that for the system with the 
Gaussian density distribution, the dynamical behavior of the cen-
tral particle was studied before [38,39], wherein it is analytically 
shown that its �x2 grows as t at late times. Here we consider 
all the particles (both core and tail particles) in the Gaussian dis-
tribution when solving for �x2. Are the anomalous sub-diffusion 
behavior and t1/2 dependence of single-file dynamics still pre-
served if a reduction in the average particle density takes place 
during the diffusion? This is a very crucial question. Further, if not, 
how does the mean square displacement scale with time in such a 
case?

2. The Monte-Carlo technique

The Monte-Carlo technique we present here is a discrete step-
wise approach that simulates how particle systems evolve with 
time with the single-file restriction. We will show in next sections 
that this quantized approach captures perfectly the dynamics of 
the continuum limit. We start with a finite number of particles N
that undergo single-file diffusion in a one-dimensional lattice with 
a fixed number of cells Ncells (in our model Ncells = 10001). The 
single-file restriction implies that each cell can be occupied by one 
particle at most at any moment in time. The x coordinates of the 
leftmost, central, and rightmost cells in the lattice are −5000, 0, 
and 5000, respectively. We take the particle distribution through a 
finite number of Monte-Carlo (time) steps. In each time step, ev-
ery particle in the distribution attempts a hop once to either the 
right or left direction, with a probability of 1/2 for each. The order 
at which the particles attempt to hop in each time step is random. 
For simplicity, for a given particle, let’s assume that the chosen 
hopping direction is to the right, the transition probability to the 
right cell is expressed as

T +
i = (1 − ui+1), (1)

where T +
i is the transition probability of a particle located in the 

ith cell to the (i + 1)th cell and u j represents the occupancy states 
of the cells (1 if occupied and 0 if empty). Similarly, the transition 
probability to the left cell is expressed as

T −
i = (1 − ui−1). (2)

At each Monte-Carlo step, the mean square displacement per par-
ticle is calculated according to

�x2 = 1

N

N∑
i=1

(
xi(t) − xi(0)

)2
, (3)

where xi(t) and xi(0) are the positions of the particles at times t
and 0 (initial state), respectively.

We consider two different single-file systems in our simula-
tions. The first is a homogeneous system that maintains a fixed 
average particle density during the diffusion. Its initial state is con-
structed by distributing a fixed number of particles almost homo-
geneously over the lattice cells. To maintain a fixed average particle 
density, we prevent the particles from escaping off by utilizing pe-
riodic boundary conditions (similar to diffusion in a circle); that is, 
if the leftmost cell in the lattice is empty and a particle located 
in the rightmost cell attempts a hop to the right, it relocates to 

the leftmost cell (and vice versa). For such a system, the average 
particle density φ is expressed as

φ = N/Ncells, (4)

and we will show that it preserves the anomalous sub-diffusion 
behavior with time.

The second is an inhomogeneous (Gaussian) system that ex-
periences a reduction in the average particle density during the 
diffusion. Its initial state is constructed as follows; at t = 0 we dis-
tribute the particles among the cells according to the function

P (x, t = 0) = e−x2/σ 2
, (5)

where P (x, 0) is the cellular occupancy probability at t = 0 and 
σ is a parameter that characterizes the width of the Gaussian 
function. For the central cell in the lattice (the cell with x = 0), 
P (0, 0) = 1; that is, it is guaranteed to be occupied by a particle at 
t = 0, and as the x coordinates of the cells increase in both direc-
tions, P (x, 0) decreases exponentially; as a consequence, tail cells 
are almost guaranteed to be initially unoccupied; that is, the local-
ized particle density is maximum near the center and minimum 
near the tails of the lattice at t = 0. We can calculate a numerical 
estimate of the average number of particles in the system Nave as

Nave =
xmax∑
xmin

e−x2/σ 2
, (6)

where x ∈ {xmin, xmax}. It is clear that Nave increases as σ increases. 
If 1 � σ � xmax, we have

Nave ≈
∞∫

−∞
e−x2/σ 2

dx = σ
√

π. (7)

3. Anomalous behavior of single-file dynamics

We discuss here the anomalous sub-diffusion behavior of 
single-file dynamics for a system that maintains a fixed average 
particle density during the diffusion; see Fig. 1. Consider a uniform, 
initial distribution x0, j = j�, where x0, j denotes the positions of 
the particles at t = 0 and � is the spacing between neighboring 
particles (� = 1/φ), the probability distribution of a tagged parti-
cle with coordinate x can be expressed as [40]

P (x, t|x0) ∝ e−(x−x0)2/
√

�2 Dt, (8)

where x0 is the initial position of the tagged particle and D is 
the diffusion constant of the entire particle system. Equation (8)
implies

�x2 = 〈
(x − x0)

2〉 = 1

2

√
�2 Dt = 2DT t1/2, (9)

corresponding to anomalous sub-diffusion and establishing the fa-
mous statistical property in [3], where DT is the diffusion coef-
ficient of the individual tagged particles (also referred to as the 
tracer diffusion coefficient). For a distribution in which the par-
ticles are not perfectly equally spaced (the initial positions of the 
particles are chosen randomly, which is similar to the case we con-
sider in our simulation), Eq. (9) can be written as [41]

�x2 = 2

(
1 − φ

φ

)(
Dt

π

)1/2

. (10)

Fig. 2 depicts the anomalous sub-diffusion behavior and t1/2

dependence for single-file diffusion with a fixed average particle 
density. In Fig. 2(a) we show the time evolution of �x2, calculated 
according to Eq. (3), for sixty different simulations with φ = 0.5, 
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