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The possibility to detect cosmic strings – topological defects of early Universe, by means of wave 
effects in gravitational lensing is discussed. To find the optimal observation conditions, we define the 
hyperbolic-shaped Fresnel observation zones associated with the diffraction maxima and analyse the 
frequency patterns of wave amplification corresponding to different alignments. In particular, we show 
that diffraction of gravitational waves by the string may lead to significant amplification at cosmological 
distances. The wave properties we found are quite different from what one would expect, for instance, 
from light scattered off a thin wire or slit, since a cosmic string, as a topological defect, gives no shadow 
at all.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The first direct detection of gravitational waves by the Laser In-
terferometer Gravitational-Wave Observatory (LIGO) [1] opened up 
a new way to observe the Universe. Along with gravitational wave 
detection, it was the first direct observation of binary black holes. 
With this success, there are many hopes that other previously in-
visible cosmological objects, which emit or scatter gravitational 
waves, will be observed in the near future.

In this paper we discuss the possibility to detect cosmic strings 
– topological defects that may have been formed in the early Uni-
verse [2,3] – by means of wave effects in the gravitational lensing 
taking into account the interference and diffraction. We empha-
size the difference of wave diffraction on a topological defect from 
that on a compact object. For the wave effects to be detectable 
in a compact-mass gravitational lens, the wavelength λ should be 
comparable or larger than the Schwarzschild radius Rs of the lens 
[4]. In this case, the Fresnel number, which is the key parame-
ter for the diffraction, is given by Rs/λ, and the diffraction scales 
like O (λ/Rs). This scaling cannot be applied to a string, a non-
compact object with conical topology. It has been shown recently 
for the plane-wave diffraction by string [5] that the Fresnel num-
ber is determined by the ratio r�2/λ, where r is the distance from 
the string to the observer and � is a constant related to the deficit 

* Corresponding author.
E-mail address: oleg.bulashenko@ub.edu (O. Bulashenko).

angle of conical space, which is proportional to the linear mass 
of the string [6–8]. For the typical � ∼ 10−7, low Fresnel num-
bers can be achieved at cosmological distances from the string, 
r ∼ 1014 λ. As a result, the diffraction effects can be of the same 
order as the geometrical optics giving an additional amplification 
at the observation point [5]. This is a direct consequence of the 
conical topology, for which the metric is locally flat, but globally it 
forces the parallel geodesics to cross (when they pass on opposite 
sides of the string) at a large distance. On the other hand, the de-
flection angle, equal to �, is independent of the impact parameter 
[6,7]. Hence, the characteristic fringe width in the interference pat-
tern ∼ λ/(2�) does not vary with distance. This is another feature 
distinct from the compact-object lens, for which the interference 
fringe scales with distance as ∼ λ

√
r/Rs [9].

The objective of this paper is twofold. First, we study the ques-
tion of how the Fresnel diffraction zones emerge under wave prop-
agation in conical spacetime created by a straight cosmic string.1

The diffraction pattern we have obtained is quite different from 
what one would expect from light scattered off a thin wire or slit 
[10,11], since the cosmic string, as a topological defect, gives no 
shadow. After an appropriately chosen coordinate transformation, 
we convert the problem of a single-source wave in conical space 
to a more tractable form with a locally Minkowskian line element 

1 Actual strings are not straight and may contain loops, we refer to a straight-line 
segment of an infinitely long or closed string lying at the observer-source line of 
sight.
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and a limitation on the angular range. As a result, we obtain the in-
terference and diffraction pattern analytically as a superposition of 
wave fields from two image sources illuminating two virtual half-
plane screens.

Second, we take into account the curvature of the incident 
wavefront by considering the wave source at a finite distance from 
the string. This is a more general case with respect to our previous 
study [5]. By applying the uniform asymptotic theory of diffraction 
[12,13], we obtain analytical solutions for the wave field in the 
whole space including the lines of singularities at the boundaries 
of the double-imaging region. Away from the boundaries, the wave 
field is interpreted in the framework of Keller’s geometrical theory 
of diffraction [14], which has demonstrated to be quite efficient in 
studying diffraction on a topological defect [5]. Our results allow 
to predict with high accuracy the location of the diffraction max-
ima both in coordinate space and in energy spectrum, along with 
the nodal and antinodal lines of geometrical-optics interference. 
We found it convenient to associate the diffraction maxima with 
what we call the “Fresnel observation zones”, that help to localize 
the regions where the amplification due to the string is the high-
est and easier to observe. The boundaries between the zones are 
determined by hyperbolas in an equivalent Minkowskian space. In 
the limit of an infinitely distant source (incident plane wave), the 
hyperbolas convert to parabolas, all with a common focus at the 
string.

2. Wave equation in conical spacetime

We start with a spacetime metric for a static cylindrically sym-
metric cosmic string [6,8]

ds2 = −dt2 + dr2 + (1 − 4Gμ)2r2dϕ2 + dz2, (1)

where G is the gravitational constant, μ is the linear mass density 
of the string lying along the z-axis, (t, r, ϕ, z) are cylindrical coor-
dinates, and the system of units in which the speed of light c = 1
is assumed. With a new angular coordinate θ = (1 − 4Gμ)ϕ , the 
metric (1) takes a locally Minkowskian form

ds2 = −dt2 + dr2 + r2dθ2 + dz2, (2)

having, however, a limitation on the angular range. It is assumed 
here, that a wedge of angular size 8πGμ is taken out and the two 
faces of the wedge are identified [3,6]. By introducing the deficit 
angle 2� with

� = 4πGμ, (3)

the angular coordinate θ spans the range 2π − 2�.
We consider the question of finding a solution of the wave 

equation in background (1) corresponding to a time harmonic 
source, situated at a finite distance from the string. For the sake 
of simplicity, in order to keep the problem two-dimensional, we 
consider a line source parallel to the string. Our aim is to see how 
a wave emitted by a line source is diffracted in conical spacetime. 
The wave equation in background (1) for the scalar field U (r, ϕ) is 
(see, e.g., [5,15,16])(

∂2

∂r2
+ 1

r

∂

∂r
+ 1

β2r2

∂2

∂ϕ2
+ ω2

)
U = 0, (4)

where we denoted β ≡ 1 − �/π . We assume that Eq. (4) is valid 
for electromagnetic waves, as well as for gravitational waves (in an 
appropriately chosen gauge) when the effect of gravitational lens-
ing on polarization is negligible and both types of waves can be 
described by a scalar field [17]. Consider a line source E located at 
r0 = (r0, π) and emitting a cylindrical wave described by

U = A H (1)
0 (k|r − r0|), (5)

Fig. 1. Geometry of conical space at the z = 0 plane for two equivalent backgrounds 
with point S indicating the location of the string: (a) polar coordinates (r, ϕ) with a 
source E; (b) Minkowskian coordinates (r, θ) with deficit angle 2� and two image 
sources E− , E+ .

Fig. 2. Cylindrical wave emitted from a source on the upper surface of a half-plane 
screen (thick line). The space is split into two regions: illuminated (I), shadow (II).

where A is a normalization constant and H (1)
0 is the Hankel func-

tion of the first kind which satisfies the Helmholtz equation (4)
and corresponds to an outward-propagating solution [11]. It is ad-
vantageous to perform the angular transformation θ = βϕ and to 
work in the Minkowskian geometry (2) with a wedge removed 
rather than in the metric (1), as done in Ref. [5] for an infinitely 
distant source. To conveniently perform the transformation, we put 
the origin at the string location S and join the point S with the 
emitting source E by a radial line [see Fig. 1(a)]. Then we assign 
the values ϕ− = −π to the left and ϕ+ = π to the right of the line 
S E that will be the cut line. Assuming that the emitting wave is 
symmetric (isotropic), we obtain a zero derivative ∂ϕU = 0 at the 
cut. After the angular transformation, the line S E converts to the 
wedge S E− , S E+ , given by the angles ±(π − �) [see Fig. 1(b)]. 
The two faces of the wedge should be identified since they rep-
resent the same plane in the spacetime (1). Thus, the propagation 
of a wave in conical spacetime can be represented as the propa-
gation of two waves in flat geometry with a wedge removed. In 
our consideration, each emitting source lies on the correspond-
ing face of the wedge. Our next step is to show that the problem 
posed in this section can be effectively treated in the framework 
of the canonical problem of diffraction on a perfectly conducting 
half-plane screen [5].

3. Uniform asymptotic theory of diffraction on a half plane

Let us consider a half-plane screen defined in polar coordinates 
(r, α) by: α = 0 (upper surface) and α = 2π (lower surface). Ac-
cording to our geometry, the source is located on the upper surface 
of the screen at a distance r0 from the edge, i.e., at (r0, 0) (see 
Fig. 2).

The emission field is a cylindrical wave that can be defined 
by [11]

Ui =
√

π

2
eiπ/4 H (1)

0 (kR) ≈ eikR

√
kR

, (6)

with R =
√

r2 + r2
0 − 2rr0 cosα and the subscript “i” means “inci-

dent” field. The solution for the field in the whole space can be 
expressed as an integral [11,18–20]
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