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In this work we give, for the first time, the full relativistic Lagrangian density describing the motion of 
induced electric dipoles in the electric fields which induce the dipole, and the magnetic fields which 
generate the HMW topological phase. We then use this relativistic Lagrangian density to derive the 
complete set of conditions for producing topological phases with induced dipoles. We also give the 
relativistic Lagrangian density describing the motion of induced magnetic dipoles in the magnetic fields 
which induce the dipole, and the electric fields which generate the AC topological phase, and derive the 
conditions for this AC phase to be topological. These conditions have been incompletely discussed in 
previous studies. We note that, in both the AC and HMW cases, the topological phases are generated by 
the cross product of electric and magnetic fields in the form B × E which reinforces the dual nature of 
these two topological phases.

© 2017 Elsevier B.V. All rights reserved.

The topological phase is one of the most important aspects of 
quantum mechanics which distinguish quantum from classical me-
chanics. Some of the key examples come from quantum mechan-
ical electromagnetic interactions. There are three quantum me-
chanical electromagnetic topological phases, the Aharonov–Bohm 
(AB) phase [1], the Aharonov–Casher (AC) Phase [2] and the He–
McKellar–Wilkens (HMW) phase [3–5], which have been experi-
mentally verified. These phases reside in the phase factor of the 
wave function. A common feature of the topological nature of 
these phases is that when a particle, carrying a certain “charge” 
which induces interactions with external electric and/or magnetic 
fields, travels through regions where, in classical sense, no forces 
act on the particle, but when it encircles a closed path which con-
tains certain field configurations (FC) which the particle does not 
enter, the wave function develops a non-trivial phase independent 
of the particular path travelled as long as it encloses the given 
FC [6]. In the AB case, the charge is the electric charge and the 
FC is magnetic flux. In AC and HWM cases, the charges are mag-
netic dipole and electric dipole and the FCs are field configurations 
in which the vector product of the magnetic or electric dipole and 
the electric or magnetic field has a non-vanishing curl. These non-
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trivial phases cause interference effects which have been observed 
experimentally, the topological AB phase by Chambers [7] and by 
Tonomura et al. [8], the topological AC phase by Cimmino et al. [9]
and the Toulouse group [10], and the topological HMW effect by 
the Toulouse group [11], and the Tokyo Atom Interferometry Group 
[12]. For the HMW effect, because no atom has an observable elec-
tric dipole moment, it is necessary to induce the electric dipole 
moment by applying an electric field [4]. Using an induced electric 
dipole moving in a magnetic field also means that the phase can 
be topological without needing a magnetic monopole source of the 
magnetic field [13]. Recent reviews of electromagnetic topological 
phases have been given by BMcK in Ref. [14] and Ref. [15].

A crucial ingredient in identifying a topological phase is to anal-
yse the relevant Hamiltonian governing the motion of a particle 
to see if there are certain configurations so that there is a term 
(terms) Htop which exhibits the feature that they do not exert force 
on the particle and therefore can be transformed into the wave 
function producing a phase factor e−iHtop�t . When the particle is 
travelling a closed path taking a time T, one integrates the phase 
factor 

∫ T
0 Htopdt . One can translate this into an integral along the 

path, 
∮
C T ·dr. One then checks to see if this integral has a value 

independent of the path travelled. In order to have a topological 
phase certain conditions have to be satisfied. Without a clear un-
derstanding of the conditions one may make false interpretations 
of the observation.
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The Aharonov–Bohm phase is always topological in its nature 
as long as the path of the charged particle encloses some mag-
netic flux. For the AC and HMW phases topological phases can 
develop only under certain circumstances. Essential conditions are 
that there is translational symmetry in one direction, and that the 
dipole moment in question is normal to both the direction of mo-
tion and the field with which it interacts. For the HMW phase it 
is particularly important to understand the constraints that must 
be satisfied by the electromagnetic fields through which the in-
duced dipole is travelling. In the following we clarify these condi-
tions which have not been accurately discussed for these induced 
dipoles. Previous discussions have been based on non-relativistic 
Lagrangian for interaction of a dipole with electromagnetic fields. 
In this work we give, for the first time, the relativistic Lagrangian 
density describing the motion of induced electric (and magnetic) 
dipoles in electric (magnetic) fields which induce the dipole, and 
magnetic (electric) fields which generate the HMW (AC) topolog-
ical phases. We then use this relativistic Lagrangian density to 
derive the complete set of conditions for producing topological 
phases with induced dipoles in the non-relativistic regime. These 
conditions have been incompletely discussed in previous studies. 
However they have been met by the experiments which observed 
the HMW phase.

Because of its practical importance, we will first discuss the 
HMW phase conditions, and then discuss the case of AC phase.

The analysis should be based on induced dipoles from the start, 
which is what Wei, Han and Wei actually did [13]. They based 
their analysis, as did Wilkens [4], on the effective electric field seen 
by a particle moving in an magnetic field — called the Röntgen 
field ER = v × B, which is added to the laboratory electric field E to 
obtain the electric field E0 = (E + v × B) experienced by the dipole 
in its rest frame. Through out this paper, c = 1 and h̄ = 1 units will 
be used. If the polarisability of the atom is α its electric dipole 
moment is

d = α(E + v × B) . (1)

The Lagrangian is then

L = 1

2
mv2 + 1

2
α(E + v × B)2

= 1

2
(m + αB2)v2 + 1

2
α

(
2v · (B × E) + E2 − α(v · B)2

)
. (2)

Wei, Han, and Wei obtain their form of the HMW phase by ne-
glecting the terms αE2, verifying that α(B)2 � m, so that it may 
also be neglected, and ensuring that the experimental configura-
tion is such that v ⊥ B, so that v · B. We follow their example and 
the resulting Schrödinger equation is

1

2m
(−i∇ − α(B × E))2 ψ = 0 , (3)

which can be transformed to the field free Schrödinger equation 
by a phase transformation with the phase

χW H W = α

∫

C

B × E · dr . (4)

This is a topological phase if

curl (B × E) = B div E − E div B + (B · ∇)E − (E · ∇)B ,

vanishes in the interference region and is non-zero in the excluded 
region. Now electric charges, as sources of E, can generate the 
topological phase through the first term above [4]. Inducing the 
electric dipole removes the link to magnetic monopoles. So far we 
have not specified any condition on the electric field. Our previ-
ous relativistic analysis [3] suggests that the electric field should 

also be normal to the velocity. Why has this not come out in the 
analysis of Wei, Han, and Wei [13]?

In an attempt to answer this question, it would seem to be 
more reliable to obtain the relativistic corrections by taking the 
low velocity limit of a fully relativistic theory, rather than trying 
to introduce the corrections into the non-relativistic result. That is 
the approach we now adopt.

Minkowski [17] is the standard reference for the relativistic 
treatment of materials. There are accessible accounts in Pauli [18]
and Møller [19]. Minkowski’s proposal is that the relativistic ver-
sion of D and H is the tensor Gμν obtained by replacing E and B
in Fμν by D and H. The Lagrangian density is then −Gμν F μν (up 
to some constant factor).

As (in Heaviside–Lorentz units)

D = E + P , H = B − M ,

we should introduce a tensor (which Becker and Sauter [20] call 
the moments tensor) Kμν constructed from Fμν by replacing E
with P and B with −M. A moments tensor can be constructed from 
the electric and magnetic polarisation density of material bodies or 
the electric and magnetic dipole moments of individual atoms. We 
will use Kμν as the moments tensor of atoms. This clearly shows 
that in relativity electric and magnetic moments get mixed up. This 
is nicely explained (with examples) by Becker and Sauter.

For now we will ignore intrinsic moments which are propor-
tional to the spin of the particle, and consider only induced mo-
ments, which are proportional to the applied fields. We have to get 
to the generalisation of P = αE, and M = χB, where α is the elec-
tric polarisability and χ is the magnetic susceptibility, which hold 
in the rest frame of the material. Following Minkowski we write, 
with uμ as the four velocity of the moving particle,

uμKμν = αuμFμν and uμ K̃μν = χuμ F̃μν, (5)

which are identical to the above in the rest frame, and are tensor 
equations, so they are the correct generalisation.

In the rest frame the electric and magnetic fields are the spatial 
components of

Eμ = uν F μν and Bμ = uν F̃ μν , (6)

and, in the sense that qEμ and g Bμ are the Minkowski four-
force on a test charge q and a test magnetic monopole g in a 
frame in which they are moving with four-velocity uμ , Eμ and 
Bμ are appropriate relativistic generalisations of E and B respec-
tively. In particular qEμ is simply the Minkowski four-force version 
of the Lorentz force on the charged particle. Its spatial component 
qγ (E + v × B) is the Lorentz force on the charge, and its time 
component qγ v · E is the work done on the charged particle. Here 
γ = 1/

√
1 − v2.

Similarly

Pμ = uν K μν and Mμ = uν K̃ μν , (7)

are appropriate relativistic generalisations of P and M respectively.
We re-write equation (5) as

Pμ = αEμ and Mμ = χ Bμ , (8)

as the relationship between the induced electric moment and the 
electric field and the induced magnetic moment and the magnetic 
field. In the rest frame they are identical to the non-relativistic 
equations, and are tensor equations, so they are the correct gener-
alisation, at least in the simplified situation that the polarisability 
and the susceptibility are scalars. Pauli’s discussion (in §34) sug-
gests that this is an adequate approximation, and we will use it.

Møller shows how to construct Kμν from Pμ and Mμ , and 
hence the electromagnetic field. The result is
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