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We investigate Aharonov–Bohm effect in bilayer graphene. We consider a setup of n–p(n′)–n junction 
with Aharonov–Bohm loop connected in the transmission region. In the presence of trigonal warping we 
show that, due to the anisotropic dispersion of eigenspectrum, the Aharonov–Bohm interference depends 
on the geometry of junction: it exists for armchair interface but vanishes for zigzag interface. For the 
armchair interface, it is demonstrated that the period of Aharonov–Bohm oscillation is �0 = h/e and the 
amplitude of oscillation can be varied with incident energy and the barrier height of the junction.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The Aharonov–Bohm (AB) effect [1], a pure quantum phe-
nomenon based on quantum interference, has been studied in 
many areas of physics. Experimentally, the effect was proved by 
measuring phase shift due to the AB interference [2–4]. In solid-
state material the AB effect was observed in mesoscopic metal ring 
[5] and carbon nanotubes [6,7]. In recent years, the study of AB 
effect in monolayer graphene (MLG) has also attracted much inter-
est because of its peculiar electronic transport property stemming 
from the linear dispersion of energy spectrum and extra degrees of 
freedom such as sublattice and valley [8]. Several experimental ob-
servations of the AB effect in MLG with ring geometry, including 
some special features not observed in metal and semiconductor, 
have been reported [9–11]. The AB effect in a MLG ring, in con-
junction with confinement potential, has also been exploited to 
produce valley polarized persistent currents [12].

While there have been extensive studies on the AB effect with 
MLG no investigation of the effect has been performed for a bilayer 
graphene (BLG) which has more diverse electronic properties [13]. 
In this paper, we investigate the AB effect in BLG. In particular, 
we are interested in the influence of trigonal warping (TW) on the 
AB effect. In BLG with Bernal stacking, due to the direct interlayer 
hopping between A1 and B2 sites, a trigonal warping is introduced 
in the energy spectrum. This term breaks the rotational symme-
try of the 2D energy dispersion, which yields anisotropic transport 
of quasiparticles. As we shall show below when these quasiparti-
cles pass through a n–p(n′)–n junction initially valley-degenerate 
waves emerge as valley-dependent waves in the transmission re-
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gion. We examine the interference of these waves after traveling 
an AB loop via separate path.

We demonstrate that the AB interference is sensitive to the 
orientation of BLG at the interface of the junction. For armchair 
interface the isoenergy contour is symmetric about the normal di-
rection of incidence, whereas it becomes asymmetric for zigzag 
interface. From these properties, it is found that the AB interfer-
ence survives for armchair interface but it disappears for zigzag 
interface. For the armchair interface, numerical simulations show 
that the AB conductance oscillates with period �0(= h/e) and the 
oscillation amplitude can be varied with the barrier height of the 
junction as well as the incident energy.

2. Aharonov–Bohm conductance

In this section we describe our model and derive a formula 
for the AB conductance of the model. We will consider two cases, 
armchair interface and zigzag interface.

2.1. Armchair interface

Consider a BLG n–p(n′)–n junction with armchair interfaces 
where the p(n′) region is a rectangular barrier with width d and 
height V 0 and the right n region includes a hexagonal AB loop 
through which a magnetic flux � is threaded (see Fig. 1). In the 
presence of TW the low-energy effective Hamiltonian of BLG is ex-
pressed as [13]

Ĥτ =
(−p2

x + p2
y

2m
+ τ v3 px

)
σ̂x −

(
τ

px p y

m
+ v3 p y

)
σ̂y , (1)
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Fig. 1. Bilayer graphene n–p(n′)–n junction with armchair interfaces and hexagonal 
Aharonov–Bohm loop. The gray region indicates potential barrier (p(n′) region). � is 
the magnetic flux threading the hole of the loop.

where σ̂x,y are the Pauli matrices, px,y = −ih̄∂x,y , m = γ1/2v2
F �

0.043me is an effective mass (γ1 � 0.4 eV), v3 = γ3 v F /γ0 �
0.12v F is the TW term (γ3 � 0.38 eV, γ0 � 3.16 eV, v F � 106 m/s), 
and τ is the valley index with τ = +1 for K valley and τ = −1
for K ′ valley. In the area of AB loop with magnetic flux we use the 
substitution px,y → �x,y = px,y +e Ax,y and choose Landau gauge 
for the vector potential such that A = (0, Bx, 0) which preserves 
the translational invariance along the y direction. The uniform per-
pendicular magnetic field B is threaded the inner hole of the loop 
to produce magnetic flux � = 2

√
3 Br2. In the following we will 

assume Lx,y � lB , where Lx,y are the linear sizes of AB loop and 
lB = √

h̄/eB is a magnetic length. It will also be assumed that the 
two arms of AB loop are symmetric about the normal direction 
of incidence (the x-axis) and their widths as well as those of the 
left and right leads are large enough that the edge effects due to 
boundary conditions can be neglected [14,15].

In the incidence and transmission regions the eigenspectrum 
and pseudospinor of the Hamiltonian (1) are given by

|χτ 〉 = 1√
2

(
1

−eiτδτ

)
,

δτ = arctan
εk sin 2φ + τε3 sinφ

εk cos 2φ − τε3 cosφ
,

Eτ (k, φ) =
√

ε2
k + ε2

3 − 2τεkε3 cos 3φ , (2)

where εk = h̄2k2/2m, ε3 = h̄kv3 and φ = arctan(ky/kx) with k =
(kx , ky) being the wave vector. The TW term ε3 distorts isoenergy 
curves for the eigenspectrum Eτ (k) to have anisotropic disper-
sion. As a result, for a given wave vector k, the group velocity 
vτ = (1/h̄)∇k Eτ (k) of one valley is different from the other. Be-
cause of this valley-dependent transport property initially valley-
degenerate incident waves, after transmitting the barrier, will ap-
pear as valley-dependent waves with different transmission ampli-
tudes T K and T K ′ .

In Fig. 2 we plot some examples of transmission probabilities 
as a function of incident angle and barrier height for the armchair 
interface. It can be seen that the transmissions from each valley 
are different in the anisotropic dispersion (second and third rows) 
while there is no valley-dependent transmission in the isotropic 
dispersion (first row). We note that, for the armchair interface, the 
angle-dependent transmissions are distributed symmetric about 
the normal incidence, which can be expected from the isoenergy 
curve (see Fig. 3 below).

Taking into account the valley-dependent transmitted waves, 
the total wave in the interference region can be expressed as

|ψ〉 =
∑
τ=±

∑
s=±

Tτ (φs)|χτ (φs)〉|kτ (φs)〉 eiαs , (3)

where τ = ± represent the valleys as before and the index s de-
picts the spatial dependence of polarized waves through the inci-
dent angle φs such that

−π

2
≤ φ− ≤ 0 , 0 ≤ φ+ ≤ π

2
. (4)

Thus, φ+ (φ−) is associated with waves propagating upper (lower) 
arm of the AB loop and α± are the corresponding AB phases given 
by

α± = 2π

�0

±∫
A · dr

(
�0 = h

e

)
. (5)

The momentum states |kτ (φs)〉 denote plane waves, satisfying or-
thogonality condition

〈kτ ′(φs′)|kτ (φs)〉 = δτ ′τ δ (kτ ′(φs′) − kτ (φs)) , (6)

kτ (φs) = kτ (φs)
(
sgn(s) cos φs ex − sgn(s) sin |φs|ey

)
.

Here, the valley and angle-dependent magnitude kτ (φ) is deter-
mined by equating an incident energy ε with the eigenspectrum 
Eτ (k) in (2). For a given incident energy ε , the orthogonal con-
dition δτ ′τ disallows interference between inter-valley waves. The 
remaining condition then requires kτ (φs′ ) = kτ (φs) and φs′ = ±φs , 
which, for the interference between the waves from upper and 
lower arms, leads to kτ (φ−) = kτ (φ+) with φ− = −φ+ . For arm-
chair interface this condition is satisfied because the isoenergy 
contour of the eigenspectrum (2) is symmetric about φ = 0 as 
illustrated in Fig. 3: this is also seen from the symmetric transmis-
sions of each valley in Fig. 2. In terms of transmission amplitude, 
the only surviving interference terms are T ∗

τ (φ+)Tτ (φ−) and its 
complex conjugate.

To investigate the AB effect in the present model we consider 
conductance across the sample. We start with an angle-dependent 
(and also valley-dependent) velocity in the interference region, de-
fined as

vτ (φ) = 〈ψ |v̂τ |ψ〉 , v̂τ = 1

ih̄

[
r̂ , Ĥτ

]
, (7)

where the explicit forms of velocity operator v̂τ and velocity vτ (φ)

are, respectively, given in Eqs. (A.1) and (A.2). Unlike isotropic 
transmission the velocity vτ (φ) cannot be decoupled from the 
transmission amplitudes due to the angle-dependent magnitude 
kτ (φ). To proceed we take an average of the velocity over incident 
angle φ, defined as

〈vτ 〉 = 1

2φτ c

φτ c∫
−φτ c

vτ (φ)dφ . (8)

Here, due to the anisotropic property of isoenergy contour, the 
range of incident angles depends on valley and given by |φ| ≤
φτ c , where the limit φτ c is determined by the condition vin

τ x =
(1/h̄) [∇k Eτ (k)]x ≥ 0. Using (2) this condition reads

h̄

m
kτ (φ) cos(δτ (φ) − φ) − τ v3 cos δτ (φ) ≥ 0 . (9)

Employing the properties δτ (−φ) = −δτ (φ) and kτ (−φ) = kτ (φ)

and using the expression of vτ (φ) in Eq. (A.2), the angle average 
will cancel the y component and we obtain

〈vτ 〉 = h̄

2mλ

1

2φτ c

φτ c∫
−φτ c

στ (α,φ)dφ , (10)
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