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In this Letter we consider long capillary–gravity waves described by a fully nonlinear weakly dispersive 
model. First, using the phase space analysis methods we describe all possible types of localized travelling 
waves. Then, we especially focus on the critical regime, where the surface tension is exactly balanced 
by the gravity force. We show that our long wave model with a critical Bond number admits stable 
travelling wave solutions with a singular crest. These solutions are usually referred to in the literature 
as peakons or peaked solitary waves. They satisfy the usual speed-amplitude relation, which coincides 
with Scott–Russel’s empirical formula for solitary waves, while their decay rate is the same regardless 
their amplitude. Moreover, they can be of depression or elevation type independent of their speed. The 
dynamics of these solutions are studied as well.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this Letter we investigate further the problem of hydrody-
namic wave propagation over a horizontal impermeable bottom 
while we focus on a very particular regime of long capillary–
gravity waves. Consider a two-dimensional Cartesian coordinate 
system O xy where its horizontal axis coincides with the still 
water level y = 0. A layer of a perfect incompressible fluid is 
bounded from below by a flat impermeable bottom y = −d and 
from above by the free surface y = η (x, t). The fluid density is as-
sumed to be constant ρ > 0. The total water depth is denoted by 

h (x, t) 
def:= d + η (x, t). Since the bottom is flat (i.e. d = const), we 

can equivalently replace the derivatives of the free surface eleva-
tion by the same derivatives of the total water depth, i.e. η t ≡ h t , 
η x ≡ h x . We shall use this property below.

In this derivation we follow the main lines of our previous work 
[8]. According to the Young–Laplace law, the pressure p jump 
across the interface is given by the following relation:
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where σ represents the surface tension. In this study we apply 
the small (free surface’s) slope approximation to obtain � p � ≈
−σ η x x . This pressure jump appears in the water wave problem 
through the Cauchy–Lagrange integral which serves as the dy-
namic boundary condition. Below we shall return to the surface 
tension effects by considering their potential energy since it allows 
to achieve easier our goals.

In order to derive model equations for gravity–capillary surface 
water waves we have to choose an ansatz to flow’s structure and 
compute the system energy. Usually these model equations can be 
obtained if the horizontal velocity u(x, y, t) is approximated by 
the depth-averaged fluid velocity ū(x, t), and the vertical velocity 
is chosen to satisfy identically the incompressibility and bottom 
impermeability:

u(x, y, t) ≈ ū(x, t) , v(x, y, t) ≈ −(y + d) ū x(x, t) .

Below we shall omit over bars in the notation since we work only 
with the depth-averaged velocity.

The various forms of energies for the specific fluid flow are es-
timated bellow: The kinetic energy K consists of the hydrostatic 
and non-hydrostatic corrections:
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The potential energy consists of the gravity

V g =
t2∫
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x1

ρ g h 2

2
dx dt ,

and capillary contributions:
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to which we applied the small slope approximation (and we in-

troduced another physical constant τ
def:= σ

ρ ). For more details on 
the derivation of energies K and V g we refer to [8]. Now we can 
assemble the action integral:

S
def:= K − V g − V c +

t2∫
t1

x2∫
x1

ρ
[

h t + [h u] x
]
φ dx dt ,

where we enforced the mass conservation by introducing a La-

grange multiplier φ(x, t). By applying the Hamilton–Ostro-

gradsky variational principle and eliminating the Lagrange multi-
plier φ(x, t) from the equations, we arrive at the following system 
of equations:

h t + [h u] x = 0 , (1.1)

u t + u u x + g h x = 1

3 h

[
h3(u x t + u u x x − u 2

x)
]

x + τ h x x x.

(1.2)

These are the celebrated Serre–Green–Naghdi (SGN) equations 
with weak1 surface tension effects, [10,14]. The full list of (physi-
cal) conservation laws is given below. The mass conservation was 
already given in equation (1.1). The remaining identities are given 
below:[

u − (h 3 u x) x

3 h

]
t

+
[

u 2

2
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x

2
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3 h
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]
x
= 0 , (1.3)

[h u] t + [
h u 2 + 1

2 g h 2 + 1
3 h 2 γ − τ R

]
x = 0 , (1.4)

where we introduced for the sake of notation compactness two 
quantities:

γ
def:= h

[
u 2

x − u x t − u u x x
]
,

R
def:= h h x x − 1

2 h 2
x .

The quantity γ has a physical sense of the vertical acceleration of 
fluid particles computed at the free surface. Some of the conserva-
tion laws shall be used below to study travelling waves to the SGN 
system (1.1)–(1.2).

The conservation of energy can be written in the form:

Ht + Qx = 0 , (1.5)

where

1 The word ‘weak’ comes from the fact that we applied small slope approxima-
tion.
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6
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)
hu + τhx(hu)x ,

with H the approximation of the total energy and Q the energy 
flux.

The nature of the solutions of the SGN system depend on the 
parameter τ and they have been studied for the values of τ �= 1/3. 
It is know that for τ < 1/3 the system admits classical solitary 
waves of elevation while for τ > 1/3 there are only solitary waves 
of depression. In the rest of the paper we study in detail the trav-
elling wave solutions of the SGN equation with special emphasis 
in the critical case τ = 1/3.

2. Travelling wave solutions

In this Section we focus on a special class of solutions — the so-
called travelling waves. The main simplifying circumstance is that 
the flow becomes steady in the frame of reference moving with 
the wave. Thus, it allows to analyze Ordinary Differential Equa-
tions (ODEs) instead of working with Partial Differential Equations 
(PDEs). We substitute the following solution ansatz into all equa-
tions:

u (x, t) = u(ξ) , h (x, t) = h(ξ) , ξ
def:= x − c t ,

where c > 0 is the wave speed.2 Moreover, we focus on localized 
solutions of this type — the so-called solitary waves. They satisfy 
the following boundary conditions:

h(n) (ξ) → 0 , u(n) (ξ) → 0 , as ξ → ∞ ,

n = 1, 2, . . . . For the total depth and horizontal velocity profiles 
(i.e. n = 0) we have the following boundary conditions:

h (ξ) → d , u (ξ) → −c , as ξ → ∞ .

The mass conservation equation (1.1) readily yields a relation 
between u and h:

u (ξ) = − c d

h (ξ)
. (2.1)

By substituting these relations into the conservation laws (1.3), 
(1.4) and taking a linear combination of these two equations leads 
to the following implicit ODE E(h ′, h) = 0 for the total water 
depth:

E(h ′, h)
def:= Fr (h ′) 2

3
− Bo (h ′) 2 h

d
− Fr + (2 Fr + 1)h

d

− (Fr + 2)h 2

d 2
+ h 3

d 3
= 0 , (2.2)

where we introduced two dimensionless numbers:

• Fr
def:= c 2

g d : the Froude (also known as Eötvös) number

• Bo
def:= τ

g d 2 ≡ σ
ρ g d 2 : the Bond number.

The details on the derivation of the master equation (2.2) with the 
full surface tension term can be found in [7]. Let us compute the 
partial derivatives of the function E(h ′, h):

2 In other words, we consider waves moving in the rightward direction, without 
loosing generality.
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