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1. Introduction

Silicene is a 2D honeycomb-like lattice of silicon analogous to
graphene that has attracted increasing attention during last years.
It has a low buckled structure (the two sublattices in silicene are
somewhat shifted in the direction perpendicular to the silicene
sheet) and a significant spin-orbit coupling (due to heavier atoms
and the above buckled structure). Silicene has several advantages
in comparison with graphene: besides the stronger intrinsic spin-
orbit coupling (useful for a better realization of quantum spin Hall
effect in some cases), it has a better tunability of the band gap
(useful for effective field transistors working at room temperature)
and an easier valley polarization (for applications in valleytronic)
[1]. There are theoretical and experimental progress in the study
of silicene (see, for example, the reviews [1,2]). Theoretically, it
has been verified that silicene has a stable 2D honeycomb buckled
structure [3-5] with an estimated Fermi velocity vi = 10® ms~!
and with a buckled height of | = 0.44 A which allows to con-
trol the band structure by applying a perpendicular electric field
to the silicene layer. In fact the gap decreases and increases lin-
early, reaching the zero value for a critical value of the electric field
(for this critical value spins are perfectly polarized up or down
at the two inequivalent corners of the Brillouin zone, K and K’,
respectively [6]). There are a lot of works to explore possible ap-
plications of silicene, among other quantum anomalous Hall effect,
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valleytronics, spintronics, superconductivity, band engineering field
effect transistors or gas sensor [1]. Experimentally, we can stress
that it has been obtained epitaxially growing silicene on metallic
substrates and it has been observed a silicene field-effect transis-
tors operating at room temperature [2,7]. Many efforts have been
devoted to exploring silicene based 2D nanoelectronic (let us take
into account the natural compatibility with mature silicon-based
semiconductor technology [1]).

The low-energy electrons in silicene behave like massless Dirac
fermions and are described by a 2D Dirac Hamiltonian. In this ma-
terial there is a topological phase transition from a topological in-
sulator (TI) phase to a trivial band insulator (BI) phase at a charge
neutrality point (CNP) [8]. A TI-BI transition is characterized by
a band inversion with a level crossing at some critical value of a
control parameter (electric field, quantum well thickness, etc). Here
we would like to stress that Kane and Melle predicted theoretically
the existence of 2D topological insulators [9] using a model with
a 2D material isoestructural with graphene and with a stronger
spin-orbit interaction. Topological insulators were firstly observed
experimentally in mercury telluride quantum wells [10] and then
in other materials (see [11] and references therein). A topological
insulator has an energy gap but with gapless edge or surface states
that are topologically protected and immune to disorders and de-
fects, in fact it is considered a singular matter state [12-14]. There
are other gapped Dirac materials with exceptional properties as
germanene (Ge), tinene (Sn) or Indiene (In) [15] having a structure
analogous to that of silicene and described by a 2D Dirac Hamilto-
nian.
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Table 1
Parameters Aso, (spin-orbit coupling), I [15] and v (Fermi velocity) [30,31] for
monolayer Si (silicene), Ge (germanene) and Sn (tinene).

Aso (meV) 1 (A) v (10° m/s)
Si 4.2 0.44 4.2
Ge 11.8 0.68 8.8
Sn 36.0 0.84 9.7

The band topology of an insulator is mainly characterized by
the Z, topological invariant (Z; =0 for a band insulator and 1 for
a topological insulator, see [16-18]), by the Chern number (de-
fined in terms of the Berry curvature), the spin-Chern number and,
in honeycomb-like materials, by the valley-Chern number [19-22].
Other way to quantify these properties is by analyzing the edge en-
ergy spectrum (see [1] and references therein). Recently theoretic
information measures and some properties of the time evolution of
electron wave packets have been used to characterize topological
phase transitions in 2D gapped Dirac materials [23-27]. In partic-
ular, it has been shown that the inverse participation ratio (IPR) is
an alternative (Chern-like) measure of a topological insulator phase
transition [24]. The IPR measures the delocalization of a state |y)
over a basis {|i)} in terms of the probability p; of finding the state
|y) over the element |i) as [ = Zpiz. In this paper we propose
the relative Rényi entropy and the relative complexity measure to
define topological quantum numbers and characterize the topolog-
ical phases TI and BI in silicene (and other 2D analogous gapped
Dirac Materials) in external magnetic and electric fields. The pa-
per is organized as follows. In the next section we have introduced
the model for the description of silicene, in section 3 we introduce
the new topological quantum numbers doing a numerical analysis
in the silicene model. Finally, our conclusions are presented in the
final section.

2. Low energy Hamiltonian

Let us consider the effective Hamiltonian for a monolayer sil-
icene in the vicinity of the Dirac points in externals electric and
magnetic fields, £ and B which are perpendicular to the silicene
sheet [28,29]:

1 1
HE = Vr(&ox(px —eBy) —oypy) — §€5Asoo—z+§Azo'z» (1)

where £ =1 or £ = —1 corresponds to the two inequivalent points
K and K’, respectively, o; are the Pauli matrices, s =41 is the
spin, v is the Fermi velocity of the Dirac fermions, Ay, is the
spin-orbit interaction, which provides an effective mass to the
Dirac fermions, A; =€, the gap associated to the constant electric
field £, (the electric field provides a tunable gap that produce a
potential difference between both sub-lattices) and where we have
taken into account the standard minimal coupling p — p+eA with
the Landau gauge vector potential A = (—By, 0, 0).

This is the effective Hamiltonian for other 2D Dirac materials
(for example tinene or germanene) taking into account the differ-
ent values of the interlattice distance, I, the intrinsic spin-orbit
coupling, and the Fermi velocity. In Table 1 are the parameters
(theoretically calculated in [15,28,32,33]). We will do the study in
silicene and all the results that we have obtained in this paper can
be applied to the other 2D Dirac materials. These 2D Dirac mate-
rials suffer a topological phase transitions from the known as TI
phase, for |Az| < Aso, to the called BI phase, for |A;| > Ago, when
the value of the effective gap |Ags| (with Ag = (A; — sEA)/2,
the lowest band gap) goes to zero at the charge neutrality points
[6,28,32,33].

The solution of the eigenvalue problem for the Hamiltonian (1)
can be obtained analytically by [8,23-27,29]

_SAS§7 nZOs
and
—iAY |In| — &4)
s&E = S . 3
s ( B3 lin| — &) )

Where, £ = (1 £&)/2, ||n|) are the orthonormal eigenstate of
the harmonic oscillator with n =0, £1, 42, ..., @ = vg,/2eB/h is

the cyclotron frequency, and the constants Aff and Bf are given
by [29]

IE} [+-sgn(n) Ase
s sgn(n), /| —L—=5—%_ n#0,
AsE — ) sgn(n), ) e o

§&-, n=0,
Bif = 21ET) n#0, (4)
$+7 n=0.

We will used the position representation of the Fock (number)
states |n), which is given by

wl/A

PN
here, Hy(x) are the Hermite polynomials of degree n. Let us intro-
duce the position density

on(X) = |(x|n)|? (6)

(with [ pa(x)dx = 1) and the position density for the eigenvec-
tors (3)

P () = (A2 (x| — &4)se 12 + B2 (Xl — E)se 2. (7)

(xIn) =

e~ /2 Hy (Vaow) (5)

3. Topological quantum numbers
3.1. Relative Rényi entropy

Let us consider two nonnegative distribution functions f(r) and
g(r) normalized to 1. We can define the relative Rényi entropy of
order o as [34,35]

fe
g*=1(r)
provided that the integral exists and o > 0. The relative Rényi en-
tropy is an increasing function of the parameter « [36] and in the
limit &« =1 it gives us the so-called Kullback-Leibler entropy [37].
Both entropies provide a distance between the functions f and g,
although they are not true metrics. In fact when f =g, R}Of?g =1

1
(@) _
Rfy = ——1

dr (8)

and R(f"‘)g > 1 in any other case (the more different f and g are,

the lager R}Oi)g). The Relative Rényi entropy gives a local compari-

son of the distribution functions.

If we take the function f = p° and g = p’ = po, we can de-
fine a combined relative Rényi entropy in terms of the sum of the
relative Rényi entropy for electrons and holes:

RE =R +R9 (9)
Pn” 5 P0 Pn > P0 P_n>P0

Now we plot the combined relative Rényi entropy (Eq. (9)) for
silicene in terms of the external electric potential A, for different
values of the parameters. In Fig. 1 we have shown the results for
o = 2.5, an external perpendicular magnetic field B =0.01 T, the
Landau levels n =2, 3,4 and 5 and for spin up (magenta lines) and
down (green lines) Dirac fermions, in the valley &€ = 1. The curves
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