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New topological quantum numbers are introduced by analyzing complexity measures and relative Rényi 
entropies in silicene in the presence of perpendicular electric and magnetic fields. These topological 
quantum numbers characterize the topological insulator and band insulator phases in silicene. In 
addition, we have found that, these information measures reach extremum values at the charge neutrality 
points. These results are valid for other 2D gapped Dirac materials analogous to silicene with a buckled 
honeycomb structure and a significant spin-orbit coupling.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Silicene is a 2D honeycomb-like lattice of silicon analogous to 
graphene that has attracted increasing attention during last years. 
It has a low buckled structure (the two sublattices in silicene are 
somewhat shifted in the direction perpendicular to the silicene 
sheet) and a significant spin-orbit coupling (due to heavier atoms 
and the above buckled structure). Silicene has several advantages 
in comparison with graphene: besides the stronger intrinsic spin-
orbit coupling (useful for a better realization of quantum spin Hall 
effect in some cases), it has a better tunability of the band gap 
(useful for effective field transistors working at room temperature) 
and an easier valley polarization (for applications in valleytronic) 
[1]. There are theoretical and experimental progress in the study 
of silicene (see, for example, the reviews [1,2]). Theoretically, it 
has been verified that silicene has a stable 2D honeycomb buckled 
structure [3–5] with an estimated Fermi velocity v F = 106 ms−1

and with a buckled height of l = 0.44 Å which allows to con-
trol the band structure by applying a perpendicular electric field 
to the silicene layer. In fact the gap decreases and increases lin-
early, reaching the zero value for a critical value of the electric field 
(for this critical value spins are perfectly polarized up or down 
at the two inequivalent corners of the Brillouin zone, K and K ′ , 
respectively [6]). There are a lot of works to explore possible ap-
plications of silicene, among other quantum anomalous Hall effect, 
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valleytronics, spintronics, superconductivity, band engineering field 
effect transistors or gas sensor [1]. Experimentally, we can stress 
that it has been obtained epitaxially growing silicene on metallic 
substrates and it has been observed a silicene field-effect transis-
tors operating at room temperature [2,7]. Many efforts have been 
devoted to exploring silicene based 2D nanoelectronic (let us take 
into account the natural compatibility with mature silicon-based 
semiconductor technology [1]).

The low-energy electrons in silicene behave like massless Dirac 
fermions and are described by a 2D Dirac Hamiltonian. In this ma-
terial there is a topological phase transition from a topological in-
sulator (TI) phase to a trivial band insulator (BI) phase at a charge 
neutrality point (CNP) [8]. A TI–BI transition is characterized by 
a band inversion with a level crossing at some critical value of a 
control parameter (electric field, quantum well thickness, etc). Here 
we would like to stress that Kane and Melle predicted theoretically 
the existence of 2D topological insulators [9] using a model with 
a 2D material isoestructural with graphene and with a stronger 
spin-orbit interaction. Topological insulators were firstly observed 
experimentally in mercury telluride quantum wells [10] and then 
in other materials (see [11] and references therein). A topological 
insulator has an energy gap but with gapless edge or surface states 
that are topologically protected and immune to disorders and de-
fects, in fact it is considered a singular matter state [12–14]. There 
are other gapped Dirac materials with exceptional properties as 
germanene (Ge), tinene (Sn) or Indiene (In) [15] having a structure 
analogous to that of silicene and described by a 2D Dirac Hamilto-
nian.
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Table 1
Parameters �so (spin-orbit coupling), l [15] and v F (Fermi velocity) [30,31] for 
monolayer Si (silicene), Ge (germanene) and Sn (tinene).

�so (meV) l (Å) v F (105 m/s)

Si 4.2 0.44 4.2
Ge 11.8 0.68 8.8
Sn 36.0 0.84 9.7

The band topology of an insulator is mainly characterized by 
the Z2 topological invariant (Z2 = 0 for a band insulator and 1 for 
a topological insulator, see [16–18]), by the Chern number (de-
fined in terms of the Berry curvature), the spin-Chern number and, 
in honeycomb-like materials, by the valley-Chern number [19–22]. 
Other way to quantify these properties is by analyzing the edge en-
ergy spectrum (see [1] and references therein). Recently theoretic 
information measures and some properties of the time evolution of 
electron wave packets have been used to characterize topological 
phase transitions in 2D gapped Dirac materials [23–27]. In partic-
ular, it has been shown that the inverse participation ratio (IPR) is 
an alternative (Chern-like) measure of a topological insulator phase 
transition [24]. The IPR measures the delocalization of a state |ψ〉
over a basis {|i〉} in terms of the probability pi of finding the state 
|ψ〉 over the element |i〉 as I = ∑

p2
i . In this paper we propose 

the relative Rényi entropy and the relative complexity measure to 
define topological quantum numbers and characterize the topolog-
ical phases TI and BI in silicene (and other 2D analogous gapped 
Dirac Materials) in external magnetic and electric fields. The pa-
per is organized as follows. In the next section we have introduced 
the model for the description of silicene, in section 3 we introduce 
the new topological quantum numbers doing a numerical analysis 
in the silicene model. Finally, our conclusions are presented in the 
final section.

2. Low energy Hamiltonian

Let us consider the effective Hamiltonian for a monolayer sil-
icene in the vicinity of the Dirac points in externals electric and 
magnetic fields, Ez and B which are perpendicular to the silicene 
sheet [28,29]:

Hξ
s = v F (ξσx(px − eB y) − σy p y) − 1

2
ξ s�soσz + 1

2
�zσz, (1)

where ξ = 1 or ξ = −1 corresponds to the two inequivalent points 
K and K ′ , respectively, σ j are the Pauli matrices, s = ±1 is the 
spin, v F is the Fermi velocity of the Dirac fermions, �so is the 
spin-orbit interaction, which provides an effective mass to the 
Dirac fermions, �z = lEz the gap associated to the constant electric 
field Ez (the electric field provides a tunable gap that produce a 
potential difference between both sub-lattices) and where we have 
taken into account the standard minimal coupling �p → �p+e �A with 
the Landau gauge vector potential �A = (−B y, 0, 0).

This is the effective Hamiltonian for other 2D Dirac materials 
(for example tinene or germanene) taking into account the differ-
ent values of the interlattice distance, l, the intrinsic spin-orbit 
coupling, and the Fermi velocity. In Table 1 are the parameters 
(theoretically calculated in [15,28,32,33]). We will do the study in 
silicene and all the results that we have obtained in this paper can 
be applied to the other 2D Dirac materials. These 2D Dirac mate-
rials suffer a topological phase transitions from the known as TI 
phase, for |�z| < �so, to the called BI phase, for |�z| > �so, when 
the value of the effective gap |�sξ | (with �sξ ≡ (�z − sξ�so)/2, 
the lowest band gap) goes to zero at the charge neutrality points 
[6,28,32,33].

The solution of the eigenvalue problem for the Hamiltonian (1)
can be obtained analytically by [8,23–27,29]

Esξ
n =

{
sgn(n)

√
|n|h̄2ω2 + �2

sξ , n �= 0,

−ξ�sξ , n = 0,
(2)

and

|n〉sξ =
(

−i Asξ
n ||n| − ξ+〉

Bsξ
n ||n| − ξ−〉

)
. (3)

Where, ξ± = (1 ± ξ)/2, ||n|〉 are the orthonormal eigenstate of 
the harmonic oscillator with n = 0, ±1, ±2, . . ., ω = v F

√
2eB/h̄ is 

the cyclotron frequency, and the constants Asξ
n, and Bsξ

n are given 
by [29]

Asξ
n =

⎧⎨
⎩ sgn(n)

√
|Esξ

n |+sgn(n)�sξ

2|Esξ
n | , n �= 0,

ξ−, n = 0,

Bsξ
n =

⎧⎨
⎩

√
|Esξ

n |−sgn(n)�sξ

2|Esξ
n | , n �= 0,

ξ+, n = 0.

(4)

We will used the position representation of the Fock (number) 
states |n〉, which is given by

〈x|n〉 = ω1/4√
2nn!√π

e−ωx2/2 Hn
(√

ωx
)

(5)

here, Hn(x) are the Hermite polynomials of degree n. Let us intro-
duce the position density

ρn(x) = |〈x|n〉|2 (6)

(with 
∫

ρn(x)dx = 1) and the position density for the eigenvec-
tors (3)

ρ
sξ
n (x) = (Asξ

n )2|〈x||n| − ξ+〉sξ |2 + (Bsξ
n )2|〈x||n| − ξ−〉sξ |2. (7)

3. Topological quantum numbers

3.1. Relative Rényi entropy

Let us consider two nonnegative distribution functions f (r) and 
g(r) normalized to 1. We can define the relative Rényi entropy of 
order α as [34,35]

R(α)

f ,g = 1

α − 1
ln

∫
f α(r)

gα−1(r)
dr (8)

provided that the integral exists and α > 0. The relative Rényi en-
tropy is an increasing function of the parameter α [36] and in the 
limit α = 1 it gives us the so-called Kullback–Leibler entropy [37]. 
Both entropies provide a distance between the functions f and g , 
although they are not true metrics. In fact when f = g , R(α)

f ,g = 1

and R(α)

f ,g > 1 in any other case (the more different f and g are, 

the lager R(α)

f ,g ). The Relative Rényi entropy gives a local compari-
son of the distribution functions.

If we take the function f = ρ
sξ
n and g = ρ

sξ
0 = ρ0, we can de-

fine a combined relative Rényi entropy in terms of the sum of the 
relative Rényi entropy for electrons and holes:

R̂(α)

ρ
sξ
n ,ρ0

= R(α)

ρ
sξ
n ,ρ0

+ R(α)

ρ
sξ
−n,ρ0

(9)

Now we plot the combined relative Rényi entropy (Eq. (9)) for 
silicene in terms of the external electric potential �z for different 
values of the parameters. In Fig. 1 we have shown the results for 
α = 2.5, an external perpendicular magnetic field B = 0.01 T, the 
Landau levels n = 2, 3, 4 and 5 and for spin up (magenta lines) and 
down (green lines) Dirac fermions, in the valley ξ = 1. The curves 
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