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We find that biorthogonal quantum mechanics with a scalar product that counts both absorbed and 
emitted particles leads to covariant position operators with localized eigenvectors. In this manifestly 
covariant formulation the probability for a transition from a one-photon state to a position eigenvector is 
the first order Glauber correlation function, bridging the gap between photon counting and the sensitivity 
of light detectors to electromagnetic energy density. The position eigenvalues are identified as the spatial 
parameters in the canonical quantum field operators and the position basis describes an array of localized 
devices that instantaneously absorb and re-emit bosons.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In nonrelativistic quantum mechanics (QM) the wave function 
is the projection of a particle’s state vector onto a basis of posi-
tion eigenvectors and its absolute square is the positive definite 
probability density. However, many experimental tests of QM are 
performed on photons and there is currently no well-defined rel-
ativistic QM [1–5] of photons or the neutral Klein–Gordon (KG) 
bosons often considered in their place for simplicity [6,7]. Recently 
it was claimed that the photon wave function [8] and Bohmian 
photon trajectories [9] were observed using weak measurements. 
This interpretation, justified by the analogy between the paraxial 
and Schrödinger equations, is disputed and an alternative inter-
pretation based on the electromagnetic field has been presented 
[6,10,11]. In quantum optics most theorists deny the existence of 
number density and instead base calculations on energy density 
[12–15], although QM based on number density has been pro-
posed [16]. The photon wave function and its application to emis-
sion by an atom and Bohmian trajectories is reviewed in [17,18]. 
Two sources of nonlocality have contributed to the perception that 
there is no relativistic QM or number density: Wave functions are 
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assumed to be of positive frequency while Hegerfeldt’s theorem 
[19] tells us that this restriction leads to instantaneous spreading, 
and the Newton–Wigner (NW) position eigenvectors [20] are lo-
calized in the sense that they are orthogonal but their relationship 
to the physical fields and to current sources is nonlocal in con-
figuration space. We will argue here that both of these sources 
of nonlocality are nonphysical: In biorthogonal QM [21] the non-
local transformation to the NW basis is not required [22] and a 
scalar product exists [23] that does not require separation of the 
fields into their nonlocal [5] positive and negative frequency parts 
[24]. As a consequence real fields are allowed and the paradoxi-
cal observer dependence of particle density on acceleration [7,25]
can be avoided. In the manifestly covariant formalism derived here 
we identify the position eigenvalues of relativistic QM with the 
spatial parameters in the canonical quantum field theory (QFT) op-
erators and the localized states as derivatives of Green functions 
that describe an array of emitting and absorbing devices localized 
in spacetime. This unifies the physical interpretation of the posi-
tion coordinate in classical electromagnetism, relativistic QM and 
QFT.

The conventional scalar product [7] is a difference of particle 
and antiparticle terms so it is indefinite unless the field is lim-
ited to positive frequencies. The scalar product derived in [23,26]
is positive definite for both positive and negative frequency fields. 
If this scalar product is used, inclusion of negative frequency states 
becomes mathematically straightforward. First quantized fields de-
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scribing neutral KG particles and photons are real so inclusion of 
negative frequency fields is not only reasonable, it is essential. For 
photons the first quantized theory derived in [23] restricted to real 
fields is essentially classical electrodynamics with a rule for cal-
culating number density. However, QFT is required for description 
of multiphoton states and entanglement. It is a consequence of the 
Reeh–Schlieder (RS) theorem [27] of algebraic QFT (AQFT) [28] that 
there are no local creation or annihilation operators and the vac-
uum is entangled across spacelike separated regions [3–5,29]. Any 
number operator that counts a particle by annihilating it with the 
positive frequency part of a field operator and then recreating it 
is nonlocal. Localization is a finite region requires summation over 
positive and negative frequencies [30]. A particle’s energy must be 
bounded from below to prevent it from acting as an infinite en-
ergy source [4] so it is essential to make a distinction between 
energy and frequency. In AQFT, also called local QFT, causality 
is enforced by the microcausality assumption that field operators 
defined across space-like separated regions commute [3]. In Sec-
tions 3 and 4 both positive and negative frequency states will be 
defined and in Section 6 their interpretation in terms of absorbed 
and emitted positive energy particles will be elaborated on. We 
find no conflict of our localized bases with AQFT; rather the RS 
theorem and microcausality support our proposal that, in a covari-
ant formulation, both absorbed and emitted neutral bosons should 
be counted.

The wave functions derived in [23,26] are projections of the 
field onto NW position eigenvectors [20]. NW found a position op-
erator for KG particles, but they concluded that the only photon 
position operator is the Pryce operator whose vector components 
do not commute [31], making the simultaneous determination of 
photon position in all three directions of space impossible. They 
had assumed spherically symmetrical position eigenstates for pho-
tons, while photon position eigenvectors have an axis of symmetry 
like twisted light [32]. The photon Poincaré group is discussed in 
[33,34]. Following the NW method with omission of the spher-
ical symmetry axiom, a photon position operator with commut-
ing components and cylindrically symmetrical eigenvectors can be 
constructed [33]. Since spin and orbital angular momentum are 
not separately observable [35], its eigenvectors have only defi-
nite total angular momentum along some fixed but arbitrary axis 
[34]. A generalization of this cylindrically symmetric NW position 
operator was derived independently in [23]. Here we retain this 
symmetry but omit the NW similarity transformation that leads to 
nonlocality in configuration space.

The similarity transformation to the NW basis preserves scalar 
products but its nonlocal relationship to the physical fields has 
been interpreted as a nonlocal relationship between number den-
sity and energy density [14]. The nontrivial metric factor in the 
NW basis is not physically observable [36], and this suggests that 
nonlocality of the NW position eigenvectors is also not physically 
observable. Here we will work in the formalism of biorthogonal 
QM [21] that does not require transformation to the NW basis. 
Biorthogonal QM in a finite dimensional Hilbert space is summa-
rized here as follows: The eigenvectors of a quasi-Hermitian [37]
operator Ô and its adjoint Ô † are not orthogonal, as is the case 
for conventional Hermitian operators, but biorthogonal. This means 
that, given the eigenvector equations

Ô |ωi〉 = ωi|ωi〉, (1)

Ô †|ω̃ j〉 = ω j|ω̃ j〉 (2)

we have 〈ω̃ j |ωi〉 = δ ji〈ω̃i |ωi〉 and the completeness relation 1̂ =∑
i |ωi〉 〈ω̃i |/〈ω̃i |ωi〉. An arbitrary state |ψ〉 has an associated state ∣∣ψ̃ 〉
. If an arbitrary state vector is expanded as |ψ〉 = ∑

i ci |ωi〉 in 
the Hilbert space H then in biorthogonal QM its associated state 
is 

∣∣ψ̃ 〉 = ∑
i ci |ω̃i〉 ∈ H∗ where ci = 〈ω̃i |ψ〉 = 〈

ωi |ψ̃
〉
. Using these 

expansions it is straightforward to verify that 
〈
ψ̃1|ψ2

〉 = 〈
ψ1|ψ̃2

〉
. 

The probability for a transition from a quantum state |ψ〉 to an 
eigenvector 

∣∣ω̃i
〉

of Ô † is

pi = |〈ω̃i|ψ〉|2〈
ψ̃ |ψ 〉 〈ω̃i |ωi〉 .

(3)

A generic operator can be written in the form

F̂ =
∑
i, j

f i j |ωi〉
〈
ω̃ j

∣∣ (4)

where f i j = 〈
ω̃i

∣∣̂F
∣∣ω j

〉
can be viewed as a matrix [21]. An equiv-

alent bottom up approach is to start with a set of linearly inde-
pendent not necessarily orthogonal vectors and obtain a biorthog-
onal basis and operators describing observables [36]. In Section 3
we will apply this formalism to the biorthogonal position eigen-
vectors |φ (x)〉 = φ̂ (x) |0〉 and 

∣∣φ̃ (x)
〉 = |π (x)〉 ∝ π̂ (x) |0〉 where 

xμ = (ct,x), φ̂ (x) is a field operator, π̂ (x) is its conjugate mo-
mentum operator, and |0〉 is the global vacuum state. Extension of 
biorthogonal QM to this infinite-dimensional Hilbert space is not 
rigorous; for example completeness could fail as discussed in [21].

The rest of this paper is organized as follows: In Section 2 KG 
wave mechanics, with the field rescaled here to facilitate appli-
cation to particles with zero mass, is reviewed. In Section 3 the 
covariant position operator and positive definite probability den-
sity are derived. In Section 4 the KG position observable discussed 
in Sections 2 and 3 is extended to photons. In Section 5 the wave 
function of the photon emitted by an atom is discussed, in Sec-
tion 6 inclusion of negative frequency states, causality and local-
ized states are examined, and in Section 7 we conclude.

2. Klein–Gordon wave mechanics

We will start with a review of the KG position observable prob-
lem. The KG equation

∂μ∂μφ (x) + m2c2

h̄2
φ (x) = 0 (5)

describes charged and neutral particles with zero spin (pions). 
Here covariant notation and the mostly minus convention are used 
in which xμ = x = (ct,x), ∂μ = (∂ct ,∇), m is the mass of the 
KG particle, c is the speed of light, 2π h̄ is Planck’s constant and 
f1

←→
∂ μ f2 ≡ f1

(
∂μ f2

) − (
∂μ f1

)
f2. The function φ (x) is any scalar 

field that satisfies the KG equation (5). The four-density

JμK G (x) = igφ (x)∗ ←→
∂ μφ (x) , (6)

satisfies a continuity equation. Plane wave normal mode solutions 
to (5) proportional to exp (−iωt) are referred to as positive fre-
quency solutions, while those proportional to exp (iωt) are nega-
tive frequency. Completeness requires that both positive and neg-
ative frequency modes be included. Their contributions to J 0

K G (x)
are of opposite sign, so J 0

K G (x) is interpreted as charge density and 
the quantity g in (6) is set equal to qc/h̄ for particles of charge q.

If only particles, as opposed to both particles and antiparticles, 
are to be considered, then the KG field can be restricted to positive 
frequencies and the scalar product [7]

(φ1, φ2)K G = i

h̄

∫
t

dxφ1 (x)∗ ←→
∂ tφ2 (x) (7)

is positive definite. Here t denotes a spacelike hyperplane of si-
multaneity at instant t . The integrand of (7) looks like a particle 
density but this is misleading since J 0

K G (x) can still be negative 
if components with two or more different frequencies are added 
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