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Shortcuts to adiabaticity have been proposed to speed up the “slow” adiabatic transport of ultracold 
atoms. Their realizations, using inverse engineering protocols, provide families of trajectories with 
appropriate boundary conditions. These trajectories can be optimized with respect to the operation time 
and the energy input. In this paper we propose trigonometric protocols for fast and robust atomic 
transport, taking into account cubic or quartic anharmonicities of the trapping potential. Numerical 
analysis demonstrates that this choice of the trajectory minimizes the final residual energy efficiently, 
and shows extraordinary robustness against anharmonic parameters. These results might be of interest 
for the state-of-the-art experiments on ultracold atoms and ions.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

There is currently much interest in precise and rapid manipula-
tion of ultracold neutral atoms or ions [1–7], with the applications 
ranging from basic science and metrology to quantum information 
processing. Several approaches, different from typically “slow” adi-
abatic driving, have been put forward to achieve fast non-adiabatic 
transport, for example, optimal control theory [8–11]. The reduced 
transport time makes the cold atom manipulation more practical 
and permits researchers to avoid decoherence processes.

Recently developed concept of “shortcuts to adiabaticity” (STA) 
[12] provides alternative high-fidelity techniques for fast transport 
[13–25]. Among them, the inverse engineering, combined with 
perturbation theory and optimal control, is considered as a ver-
satile toolbox for designing the optimal protocols, according to dif-
ferent physical criteria or operational constraints [15,16]. In other 
words, among the family of shortcuts satisfying the initial and final 
conditions, the specific trap trajectory can be chosen by optimizing 
the operation time or transient excitation energy, with a restric-
tion of the allowed transient frequencies [15]. Furthermore, fast 
transport can be optimized with respect to spring-constant (color) 
noise, position fluctuation [20], and spring-constant error [22].

Although for many cold atom or ion experiments, shortcuts 
to adiabatic transport are usually designed for perfectly harmonic 
traps, most confining traps, i.e., magnetic quadrupole potential 
[10], gravitomagnetic potential [26], electrostatic potential [27] and 
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optical dipole traps [28], are of course intrinsically anharmonic. 
Actually, the anharmonic effects are of paramount importance in 
actual traps [29], which implies the unwanted final excitation, or 
even loss of atoms. This sets the bottleneck for implementing the 
possible speed-up, due to the intermediate energy excitation [30]. 
In Ref. [31], the optimal “bang-singular-bang” control is designed 
to achieve fast transitionless expansion of ultracold neutral atoms 
or ions in Gaussian anharmonic trap, with minimizing the time-
averaged perturbative energy. In fact, the anharmonicity is also 
one of significant problems on designing the fast non-adiabatic ion 
transport [17], in which the optimal strategy is strongly required 
to minimize the energy of excitation. Up to now, several works 
have been devoted to dealing with the atomic transport in anhar-
monic traps and overcoming their difficulty. (i) The trap trajectory 
of transport in general power-law traps including cubic or quar-
tic anharmonicities has been calculated from the classical Newton 
equation, and the quantum case for an atomic wave packet has 
been checked later [23]. (ii) The counter-diabatic driving, suggest-
ing the compensating force, has been proposed for nonharmonic 
traps [19], which was implemented for trapped-ion displacement 
in phase space [25]. However the trap frequency and size of the 
atomic cloud might be modified with the anharmonicity [24]. (iii) 
The combination of inverse engineering and optimal control the-
ory is proposed, but the anharmonicites should be considered as 
perturbation [24].

In this article, we present the trigonometric protocols for short-
cuts to adiabatic transport in anharmonic traps, including the cubic 
or quartic terms. Particularly, we try a simple but efficient cosine 
ansatz with additional boundary condition, to eliminate the anhar-
monic corrections by nullifying final residual energy. Such choice 
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also works perfectly for cancelling the spring constant error for 
two-ion transport [32]. This protocol is also similar to but differ-
ent from sine protocol implemented in the experiment of atomic 
transport, in which high efficiency [11], above 97%, has been re-
ported. Furthermore, our numerical analysis has illustrated that the 
designed shortcuts, particularly using the cosine ansatz, is much 
more stable with respect to anharmonic parameters, and the cor-
responding final residual energy is smaller. These results presented 
here, being aimed at the recent transport experiments with ultra-
cold neutral atoms [8,10,11], are applicable to trapped ions [6,7,25]
as well.

2. Transport with anharmonic traps

2.1. cubic anharmonicity

First of all, we consider the transport of an atom of mass m
confined in an anharmonic trap with the cubic term, resulting from 
an expansion around the minimum of the real tapping potential [8,
23,24,27]. The whole trapping potential is written as

V (x, t) = 1

2
mω2

0 [x − x0(t)]2 + 1

3
m

ω2
0

ξ
[x − x0(t)]3 , (1)

where x0(t) represents the trap trajectory to be determined and 
ξ quantifies the strength of the cubic anharmonicity. According to 
the Newton’s law, the motion of an atom obeys

ẍ + ω2
0 [x − x0(t)] + ω2

0

ξ
[x − x0(t)]2 = 0, (2)

from which, by introducing u = ω0t f , x̃0 = x0(t)/d, s = t/t f , we 
have the dimensionless form (from now on dots are derivatives 
with respect to τ = ω0t)
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In this case, an exact trap trajectory,

x̃0(s) = x̃(s) + ξ
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can be worked out by choosing the appropriate x̃(s) with the right 
boundary conditions, when the inverse engineering is exploited. 
Nevertheless, there are many possible options, which leaves a 
space for the optimization. To minimize the anharmonic effect, we 
rewrite Eq. (3) and solve it perturbatively, see Ref. [23],

¨̃x + u2(x̃ − x̃0) = −u2d

ξ
(x̃ − x̃0)

2 � −d

ξ

( ¨̃x1)
2

u2
, (5)

where x̃1(s), the trajectory of the center of mass in harmonic trap, 
satisfies

¨̃x1 + u2(x̃1 − x̃0) = 0. (6)

The perturbative solution to the first order is x̃(s) � x̃1(s) +
(d/ξ) f1(s) with

f1(s) = − 1

u3

s∫
0

¨̃x2
1(s′) sin[u(s − s′)]ds′. (7)

Obviously, when the anharmonicity correction is eliminated,
f1(s) = 0, we have x̃(s) � x̃1(s).

Moreover, in order to guarantee the shortcut to adiabaticity, we 
have to nullify the initial and final residual energy (in the unit of 
h̄ω0) [22–24],

�E = mω0d2
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]
, (8)

which implies the boundary conditions at the edges, that is, 
x̃1(0) = 0, ˙̃x1(0) = ˙̃x1(1) = 0, ¨̃x1(0) = ¨̃x1(1) = 0, and x̃1(1) = 1. 
These are similar to those imposed from the commutator relation 
between the Lewis–Riesenfeld dynamical invariant and Hamilto-
nian at the edges, see Refs. [14,15]. Here an additional condition, 
f1(s) = 0, should be fulfilled to cancel the anharmonic effect, thus 
nullifying the excitation energy.

In this spirit, we try the trigonometric protocols for designing 
the shortcut with minimizing the anharmonic effect. By assuming 
the cosine ansatz, x̃1(s) = a0 + ∑3

j=1 a j cos [(2 j − 1)π s], we solve 
the trajectory of the center of mass satisfying all six boundary con-
ditions mentioned above, and the additional condition f1(s) = 0. 
As a consequence, we obtain

x̃1(s) = 1

2
+ a1 cos(π s) + a2 cos(3π s) + a3 cos(5π s), (9)

with the numbers a1 = −0.579, a2 = 0.08725 and a3 = −0.00825. 
In this situation, x̃(s) � x̃1(s), the trajectory of the trap center, 
x̃0(s), can be solved from Eq. (6), and the final residual energy (8)
is nothing but zero. However, a j ( j = 1, 2, 3) require high accuracy 
in the experiments, since the final residual energy is sensitive to 
the parameter fluctuation.

For comparison, we also write down the simple sine ansatz,

x̃1(s) = s − (1/2π) sin (2π s) . (10)

This sine ansatz is relevant to but slightly different from that used 
in the experiment [11], in which x̃0(s) = s − (1/2π) sin (2π s) is 
assumed and thus x̃1(s) = s − (9/10π) sin (2π s). As a matter of 
fact, the reason for achieving high fidelity is that the x̃1 satisfies 
the boundary conditions x̃1(0) = ¨̃x1(0) = ¨̃x1(1) = 0 and x̃1(1) = 1. 
However, the boundary conditions ˙̃x1(0) = ˙̃x1(1) = −0.8 �= 0 sug-
gest that it is not perfect shortcut. Furthermore, an additional free 
parameter is required in sine ansatz to nullify f1(s), which results 
in

x̃1(s) = s + a1 sin (2π s) + a2 sin (4π s) , (11)

with a1 = 0.3135 and a2 = −0.236348. By interpolating such x̃1(s), 
one can calculate x̃0(s) accordingly from Eq. (6). Fig. 1 shows and 
compare all trigonometric protocols x̃1, see Eqs. (9)–(11), and the 
designed trap trajectories x̃0.

In order to check the validity of the approximation, we further 
apply the designed trajectory x̃0 and calculate the actual trajectory 
of the center of mass x̃(s) in anharmonic trap from Eq. (3), with 
the initial boundary conditions, x̃(0) = 0 and ˙̃x(0) = 0. Thus, the 
final residual energy (8) is obtained by replacing x̃1(s) with x̃(s), 
and is rather than zero. In Fig. 2, the final residual energy is com-
pared for different trigonometric protocols. We demonstrate that 
cosine ansatz is much smaller than the one for sine ansatz, since 
the orthogonality of trigonometric functions in Eq. (7). This sug-
gests that the consine ansatz for fast transport is much more stable 
with respect with the cubic anharmonicity. Moreover, the final ex-
citation energy in principle decreases when the anharmonic effect 
becomes weaker, with increasing ξ . Since the sine ansatz (11) with 
an additional parameter for nullifying f1(s) is only valid for small 
anharmonicity when ξ/d > 32.36.

Here we would like to emphasize the advantages of the cosine 
ansatz presented here. On one hand, such type of trigonometric 
ansatz with only four free parameters is much simpler than the 
conventional polynomial ansatz, where at least seven coefficients 
should be assumed and solved numerically [14,15]. On the other 
hand, the cosine ansatz is more efficient to cancel the anharmonic 
correction, induced from Eq. (7). The final residual energy can be 
reduced by about two or three orders of magnitude, as compared 
to the other sine ansatz, see Fig. 2.
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