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The nitrogen–vacancy (NV) center system has shown great potential in quantum computing due to 
its long decoherence time at room temperature by encoding the qubit in dressed states [28]. The 
corresponding control mechanisms, which is expressed by the pathways linking the initial and target 
states, can be naturally investigated with the Hamiltonian-encoding and observable-decoding (HE–OD) 
method in the interaction adiabatic representation. This is proved by the fact that the mechanisms change 
slightly with different detunings, magnetic and driving field intensities, and the dominant pathway is 
always |g〉 → |d〉 → |g〉, with |g〉 and |d〉 as the first two lowest dressed states. Cases are different 
in the diabatic representation. The orders of dominant pathways increase the driving field intensities. 
Tendencies of quantum pathway amplitudes with driving fields, magnetic fields and detunings change at 
different conditions, which can be analyzed from the Dyson series. HE–OD analysis show that the two 
states |g〉 and |d〉 in the interaction adiabatic representation are preferable to be employed as a qubit than 
the state pair |0〉 and |−1〉 in the diabatic representation under the current Hamiltonian and parameters.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

How to achieve an optimal and effective control of quantum 
systems has always been a hot topic due to its wide and potential 
application [1–12]. The corresponding control mechanism analysis 
is important to understand the underlying physics and can give 
hints to improve the control effect. The Hamiltonian-encoding and 
observable-decoding (HE–OD) technique has provided such a fea-
sible means, and expressed the mechanism in terms of different 
pathways linking the initial and target states [12–21]. In the exper-
iment, a signal function is firstly encoded in the Hamiltonian in a 
specific manner, and then the information of pathways is extracted 
by decoding the resultant nonlinear distortion of the output signal.

Quantum computation requires good control of quantum qubits. 
The nitrogen–vacancy (NV) center is an important candidate of 
solid-state quantum computing because of its special nature [22], 
such as long decoherence time at room temperature [23], good 
scalability and microwave manipulation [24]. In this context, we 
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will perform a mechanism analysis on the NV center system with 
HE–OD.

This paper is organized as follows. Section 2 introduces the HE–
OD method for mechanism analysis and the two representations 
for the NV center system. Section 3 gives the results. The final con-
clusions are presented in Section 4.

2. Methodology

2.1. The HE–OD method

It is known that the state of a quantum system can be de-
scribed by the Schrödinger equation

i
d |Ψ (t)〉

dt
= H |Ψ (t)〉 . (1)

The state Ψ (t) at time t can be obtained from the propagator U (t)
and the initial state |Ψ (0)〉 as |Ψ (t)〉 = U (t) |Ψ (0)〉. The time evo-
lution of U (t) satisfies

i
dU (t)

dt
= HU (t) . (2)

Its Dyson expansion is
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U (t) = I + (−i)

t∫
0

H (t1)dt1

+ (−i)2

t∫
0

H (t2)

t2∫
0

H (t1)dt1dt2 + · · ·. (3)

The transition amplitude from the initial state |a〉 to the target 
state |b〉 is given by 〈b| U (t) |a〉. So the n-th order pathway |a〉 →
|l1〉 → · · · → |ln−1〉 → |b〉 has the amplitude

U
n
(
l1,...,ln−1

)
ba (t) = (−i)n

t∫
0

〈b| H (tn) |ln−1〉

×
tn∫

0

〈ln−1| H (tn−1) |ln−2〉

× · · · ×
t2∫

0

〈l1| H (t1) |a〉dt1dt2 · · · dtn. (4)

The HE–OD method introduces a dimensionless time-like vari-
able s, and the Hamiltonian is encoded as H (t) → H (t, s), which 
leads to a distorted output signal 〈b| U (t, s) |a〉. Then the method 
tries to extract the desired pathway amplitudes from these signals. 
In practice, each element of the original Hamiltonian H is modu-
lated as

Hij (t) → Hij (t)mij (s) .

Here the modulation function mij (s) is taken to be the Fourier 
form

mij (s) = exp
(
2π iγi j s/N

)
, s = 1,2, · · ·, N.

The propagator under the new Hamiltonian H (t) → H (t, s) evolves 
as

i
dU (t, s)

dt
=

⎛
⎜⎝

H11 (t)m11 (s) · · · H1d (t)m1d (s)
...

...
...

Hd1 (t)md1 (s) · · · Hdd (t)mdd (s)

⎞
⎟⎠ U (t, s) .

(5)

The transition amplitude from the initial state to the target state 
becomes

〈b| U (t, s) |a〉 =
∝∑

n=1

d∑
l1,···,ln−1=1

U
n
(
l1,...,ln−1

)
ba (t)

× M
n
(
l1,...,ln−1

)
ba (s) (6)

with

M
n
(
l1,...,ln−1

)
ba (s) = mbln−1 (s)mln−1ln−2 (s) · · · ml1a (s)

= exp
(

2π iγn
(
ln−1,ln−2,···,l1

)s/N
)

, (7)

and

γn
(
ln−1,ln−2,···,l1

) = γbln−1 + γln−1ln−2 + · · · + γl1a. (8)

Due to the orthogonality of encoding functions M
n
(
l1,...,ln−1

)
ba (s), 

the pathway amplitudes U
n
(
l1,...,ln−1

)
ba (t) featured by the frequency 

of γn
(
ln−1,ln−2,···,l1

) can be obtained by performing an inverse fast 
Fourier transform (IFFT) of Uba (t, s).

Fig. 1. Energy-level diagram of the NV center in diabatic and IA representations. 
The electronic spin-triplet states are labeled with |Ms〉, and the dressed states are 
denoted with |g〉, |d〉 and |e〉.

2.2. Diabatic and interaction adiabatic representations

A nitrogen–vacancy (NV) center is actually a spin defect con-
sisting of a substitutional nitrogen impurity adjacent to a carbon 
vacancy in diamond. According to the electronic structure theory, 
its property is determined by six electrons, with two from the 
nitrogen atom, three from the carbon atoms surrounding the va-
cancy and one from the lattice [25–27]. The net spin is one due to 
the unpaired electron of the vacancy, leading to three energy lev-
els with the magnetic quantum number Ms equal to 0, 1 or −1. 
As shown in Fig. 1, the two levels with Ms = ±1 are degenerate 
due to the axial symmetry, while the state Ms = 0 is energetically 
lower.

In the diabatic representation, the electronic spin ground states 
of an NV center in an external field Bz along the symmetry axis 
can be described by the following Hamiltonian [28]:

H = D S2
z + γe Bz Sz, (9)

where D = 2.87 GHz is the so-called zero-field splitting [22], and 
the second Zeeman term γe = 2.802 MHz/G determines the eigen-
states |Ms〉.

In experiment, two off-resonant continuous microwave driving 
fields are usually applied to transitions |0〉 → |±1〉 at the same 
time. In the interaction picture, the Hamiltonian of the NV center 
driven by two microwaves with the same off-resonance � can be 
obtained by using rotating-wave approximation:

H N V = Ha + Hb (10)

with

Ha =
⎡
⎣ � + γeb 0 0

0 0 0
0 0 � − γeb

⎤
⎦ ,

Hb =
⎡
⎢⎣

0 1
2 �1(t) 0

1
2�1(t) 0 1

2 �2(t)

0 1
2 �2(t) 0

⎤
⎥⎦ .

Here �1 and �2 are the Rabi frequencies of the two transitions. 
Then the Hamiltonian is transformed to eliminate its nonzero di-
agonal elements

H I = eiHat · Hb · e−iHat

= 1

2

⎡
⎣ 0 �1(t)ei(�+γeb)t 0

�1(t)e−i(�+γeb)t 0 �2(t)e−i(�−γeb)t

0 �2(t)ei(�−γeb)t 0

⎤
⎦.

(11)

The encoding in the diabatic representation is performed to this 
Hamiltonian.

In the following, we will introduce how to encode in the inter-
action adiabatic (IA) representation [14]. The time varying transfor-
mation that diagonalizes H N V (t) is R A(t), which links the dressed 
states and eigenstates |Ms〉. Then in the adiabatic representation, 
the evolution of the propagator becomes
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