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We explore theoretically the optical bistability and four-wave mixing (FWM) in a hybrid optomechanical 
system, where the mechanical resonator is simultaneously coupled to a cavity field and a two-level 
system (qubit). We can use a strong control field driving the cavity to control the bistable behavior 
of the steady-state photon number, phonon number, and the population inversion. The impact of qubit-
resonator coupling strength on the bistable behavior is discussed. Furthermore, the two-level system 
can significantly modify the output fields of the cavity, leading to double optomechanically induced 
transparency (OMIT) and the enhancement of the FWM intensity. We find that the distance between 
the two peaks in the FWM spectrum can be controlled by the qubit-resonator coupling strength, and the 
peak value of the FWM intensity can be adjusted by the Rabi frequency of the control field.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Hybrid quantum systems involving nanomechanical resonators 
have been under extensive investigation in the past few decades 
[1]. Work in these systems is motivated by studying the quan-
tum behavior in macroscopic objects, and potential applications 
in quantum information science and nanoscale sensing. Various 
hybrid systems have been demonstrated by coupling mechani-
cal resonators to other quantum objects, including optical cavities 
[2–4], superconducting transmission-line microwave cavity [5–7], 
and two-level systems in atoms, quantum dots, qubits as well as 
defects [8–14]. The interaction between mechanical and optical de-
grees of freedom via radiation pressure is the research topic of the 
rapidly developing field of cavity optomechanics [2–7]. Recently, 
remarkable progress has been made in this field, including ground 
state cooling of the nanomechanical resonator [15,16], optome-
chanically induced transparency (OMIT) [17–19], and ultrasensitive 
sensing [20,21]. Moreover, hybrid optomechanical systems with a 
two-level system were theoretically proposed [22–28] and experi-
mentally demonstrated [29–31].

In the field of cavity optomechanics, optical bistability can be 
controlled by a strong laser field and was first observed by Dorsel 
et al. [32]. Recently, optical bistability in optomechanical systems 
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with a quantum well [33], ultracold atoms [34–36], and a Bose–
Einstein condensate (BEC) [37,38] has been extensively studied. 
Xiong et al. [39] and Dalafi et al. [40] theoretically discussed the 
impact of the cross-Kerr (CK) effect on the steady-state behavior of 
the mean photon number. In our previous work, we have investi-
gated the optical bistability and dynamics in a hybrid optomechan-
ical system, where the cavity field is coupled to the mechanical 
resonator via the radiation pressure and to the two-level system 
via the JC coupling [41]. Furthermore, in the presence of a strong 
control field, optical response of the optomechanical system to a 
weak probe field can be modified, leading to the phenomenon of 
OMIT [17–19] and double OMIT [23]. OMIT is the analog of elec-
tromagnetically induced transparency (EIT) [42,43], and EIT can be 
used to greatly enhance the four-wave mixing (FWM) [44,45].

Motivated by these developments, we study the optical bista-
bility and four-wave mixing (FWM) in a hybrid optomechanical 
system, where the mechanical resonator is coupled to the cav-
ity field via the radiation pressure and to the two-level system 
(qubit) via the Jaynes–Cummings (JC) coupling [22–24]. We find 
that the bistable behavior of the steady-state photon number and 
the phonon number can be effectively adjusted by the Rabi fre-
quency of the control field and the detuning between the cavity 
and control field. When the qubit-resonator coupling strength is 
smaller than the transition frequency of the two-level system, the 
effect of the two-level system on the bistable behavior of the 
steady-steady state phonon number is negligible. However, the 
presence of the two-level system can lead to the appearance of 
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Fig. 1. Schematic diagram of the hybrid optomechanical system. (a) One mirror of 
the optomechanical cavity is fixed and the other is vibrating, and the cavity field 
is coupled to the mechanical resonator (vibrating mirror) via the radiation pres-
sure. The mechanical resonator is also coupled to a two-level system (qubit) via 
the Jaynes–Cummings interactions. A strong control field with frequency ωc and a 
weak probe field with frequency ωp drive the cavity simultaneously, and aout is the 
amplitude of the output fields. (b) Equivalent circuit diagram.

double OMIT in this hybrid system, therefore the FWM intensity 
can be doubly enhanced within the transparency windows.

2. Model and theory

The system under consideration is shown in Fig. 1. The me-
chanical resonator is coupled to a single-mode cavity field via 
the radiation pressure and to a two-level system via the Jaynes–
Cummings (JC) coupling. There is no direct interaction between the 
cavity field and the two-level system. The Hamiltonian of this hy-
brid system can be written as

H0 = h̄ωaa†a + h̄ωbb†b + h̄

2
ωqσz − h̄χa†a(b† + b)

+ h̄g(b†σ− + bσ+), (1)

where ωa is the resonance frequency of the cavity field with 
the creation (annihilation) operator a†(a); ωb is the resonance 
frequency of the mechanical mode with the creation (annihila-
tion) operator b†(b); ωq is the transition frequency between the 
ground state |g〉 and the excited state |e〉 of the two-level system, 
σz ≡ |e〉〈e| − |g〉〈g| is the Pauli operator, and σ+ (σ−) is the rais-
ing (lowering) operator of the two-level system; χ is the coupling 
strength between the cavity field and the mechanical resonator, 
and g is the coupling strength between the mechanical resonator 
and the two-level system.

In order to investigate the optical response of the hybrid sys-
tem, we assume that the cavity field is driven simultaneously by 
a strong control field with frequency ωc and a weak probe field 
with frequency ωp . In the rotating frame at the frequency ωc , the 
Hamiltonian of the hybrid optomechanical system reads [23]

H = h̄�aa†a + h̄ωbb†b + h̄

2
ωqσz − h̄χa†a(b† + b)

+ h̄g(b†σ− + bσ+) + ih̄(�a† − �∗a)

+ ih̄(εe−i�ta† − ε∗ei�ta), (2)

where �a = ωa − ωc is the detuning between the cavity field and 
the control field, and � = ωp − ωc is the detuning between the 
probe field and the control field; � and ε represent the Rabi 
frequencies of the strong control field and the weak probe field, 
respectively.

According to the Heisenberg equations of motion and introduc-
ing the corresponding damping and noise terms, the Heisenberg–
Langevin equations can be written as:

ȧ = −(γa + i�a)a + iχa(b† + b) + � + εe−i�t + √
2γaain(t), (3)

ḃ = −(γb + iωb)b + iχa†a − igσ− + √
2γbbin(t), (4)

σ̇− = −(
γq

2
+ iωq)σ− + igbσz + √

γq	−(t), (5)

σ̇z = −γq(σz + 1) − 2ig(bσ+ − b†σ−) + √
γq	z(t), (6)

where γa, γb , and γq denote the decay rates of the cavity field, 
mechanical mode, and two-level system, respectively. The opera-
tors ain(t), bin(t), 	−(t), and 	z(t) describe the corresponding en-
vironmental noises with zero mean values, i.e., 〈ain(t)〉 = 〈bin(t)〉 =
〈	−(t)〉 = 〈	z(t)〉 = 0. Using the mean-field approximation by fac-
torizing the averages, one can obtain the following expectation 
value equations:

〈ȧ〉 = −(γa + i�a)〈a〉 + iχ〈a〉(〈b†〉 + 〈b〉) + � + εe−i�t, (7)

〈ḃ〉 = −(γb + iωb)〈b〉 + iχ〈a†〉〈a〉 − ig〈σ−〉, (8)

〈σ̇−〉 = −(
γq

2
+ iωq)〈σ−〉 + ig〈b〉〈σz〉, (9)

〈σ̇z〉 = −γq(〈σz〉 + 1) − 2ig(〈b〉〈σ+〉 − 〈b†〉〈σ−〉). (10)

In order to solve the nonlinear equations (7)–(10), we use the fol-
lowing ansatz [46]:

〈a(t)〉 = A0 + A+ei�t + A−e−i�t, (11)

〈b(t)〉 = B0 + B+ei�t + B−e−i�t, (12)

〈σ−(t)〉 = L0 + L+ei�t + L−e−i�t, (13)

〈σz(t)〉 = Z0 + Z+ei�t + Z−e−i�t, (14)

where A0, B0, L0, and Z0 are, respectively, the steady-state solu-
tions of a, b, σ− , and σz in the absence of the probe field. For a 
weak probe field, A±, B±, L± , and Z± are much smaller than the 
corresponding steady-state values. Upon substituting Eqs. (11)–(14)
into Eqs. (7)–(10) and upon working to the lowest order in ε
but to all orders in �, we obtain the following steady-state so-
lutions:

A0 = �

γa + i�a − iχ(B0 + B∗
0)

, B0 = χ |A0|2 − gL0

ωb − iγb
,

L0 = 2g B0 Z0

2ωq − iγq
, Z0 = − γ 2

q + 4ω2
q

γ 2
q + 4ω2

q + 8g2|B0|2
, (15)

A− = α9ε

α8α9 − α10
, A+ = iχ(α6 + α∗

7)A2
0ε

∗

α∗
8α

∗
9 − α∗

10
, (16)

where
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