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Vilnius University, Center for Physical Sciences and Technology, Institute of Theoretical Physics and Astronomy, Saulėtekio ave. 3, Vilnius 10222, Lithuania
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Using the multipole expansion of electromagnetic (EM) field, we present the spin-photon coupling in 
irreducible tensor form. We evaluate the matrix elements when the radiation source is described by 
electronic transitions in atomic systems. The results indicate that the energy corrections increase for 
short wavelengths and large charge number.
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1. Introduction

In consequence of their results on the time-dependent Foldy–
Wouthuysen transformation [1], Mondal et al. show [2] that the 
spin-photon coupling represents the O (c−2) correction to the Dirac 
operator for an electron in a potential V and interacting with the 
EM field, which is characterized by the 4-component vector poten-
tial (�, A) (for an alternative derivation we refer to [3]):

HAME = 1

2c2
(H in

AME + Hex
AME) (1.1)

where

H in
AME =S · (E in × A) , E in = −grad V , (1.2a)

Hex
AME =S · (Eex × A) , Eex = − Ȧ − grad� (1.2b)

and S is the spin operator. Throughout we use atomic units un-
less explicitly stated otherwise. Following [2,4], the spin-photon 
coupling described by HAME is further referred to as the angu-
lar magnetoelectric (AME) coupling. One calls H in

AME (resp. Hex
AME) 

an intrinsic (resp. induced) part of AME coupling. In the Coulomb 
gauge fixing, Hex

AME serves as the source for obtaining the “hid-
den energy” that couples the EM angular momentum density with 
magnetic moments [4].

It is our purpose here to investigate the influence of HAME on 
the atomic energy levels provided that the radiation source is de-
fined by electronic transitions. The exploration of the standard 
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multipole expansion of EM field [5] allows us to represent HAME as 
the summable series (in the sense of distributions) of irreducible 
tensor operators, while the information about the radiation source 
is contained separately, in the coefficients of expansion (ampli-
tudes).

As one could expect, the contribution of the AME coupling 
to the total energy should be small enough. For example, we 
show that the matrix elements of the intrinsic part are of order 
O (ω2 Z 2c−3) for the E1 transition, while the matrix elements of 
the induced part are of order O (ω5 Z−2c−6) for the same type of 
radiation; here ω is the transition energy. However, ω usually in-
creases as the charge number Z becomes large, which results in 
larger energy corrections.

By (1.2), H in
AME is time-dependent, while Hex

AME is time-indepen-
dent. The latter is in agreement with [2], where the plane EM wave 
expansion is used for explaining the inverse Faraday effect. In ad-
dition, we show that Hex

AME can be split in two separate parts. One 
part is traditional in the sense that it does not vanish if the mul-
tipole moment of order l ∈ N is nonzero for at least one fixed l, 
while the second one is more “exotic” in the sense that it can 
be nonzero only if the multipole moment is nonzero for at least 
two different l. The latter case arises when, for example, one con-
siders electronic satellite transitions produced by electron capture 
and subsequent radiative decay [6–10].

In Sec. 2 we express (1.2) in irreducible tensor form. We work 
in the Coulomb gauge fixing and we use the standard technique 
of angular momentum theory [11–14] (including the notation and 
the phase system used therein). We discuss the matrix elements in 
particular cases in Sec. 3.
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2. Tensor operators

2.1. Amplitudes

Let the radiation of energy ω = νc = Eα J − Eα′ J ′ be emitted 
by the electron going from the state |α J M〉 to the (lower) state 
|α′ J ′M ′〉; α and α′ denote additional quantum numbers if neces-
sary. When ν � 1, the amplitudes for the radiation of order (l, m), 
l ∈N, m ∈ {−l, . . . , l}, are approximated by [5]

a#
νlm = δmρa#

νl , ρ = M − M ′ . (2.1)

Here the superscript denotes both E (electric type) and M (mag-
netic type), and

aE
νl = λνl Q νl , aM

νl = −λνl Mνl . (2.2)

The multiplier λνl is given by

λνl =(−1) J− J ′+1 i−lνl+2 Kl

(2l + 1)!!
√

4π(2l + 1)√
2 J + 1

·
[

J ′ l J
M ′ ρ M

]
, Kl = −√

1 + 1/l . (2.3)

The number Q νl (resp. Mνl) is the reduced matrix element of the 
electric (resp. magnetic) multipole moment Q l (resp. Ml):

Q νl = (α′ J ′‖Q l‖α J ) , Mνl = (α′ J ′‖Ml‖α J ) . (2.4)

When the magnetization is ignored, we have

Q l = −rlCl , Ml = −
√

l(2l − 1)

c(l + 1)
rl−1[Cl−1 × L1]l . (2.5)

Otherwise: Q l is replaced by Q l + O (ν/c), hence we omit the 
O (ν/c) correction since we already have the small νl+2 in (2.3); 
Ml is replaced by Ml + M ′ l , where

M ′ l = −1

c

√
l(2l − 1)rl−1[Cl−1 × S1]l . (2.6)

In the examples to be followed, we assume Ml + M ′ l when we 
write Ml; see also [11, Secs. 4 and 25].

2.2. Intrinsic part

As in [2], we take the real part of the external electric field 
Eex. Applying the well-known angular momentum technique, we 
deduce from [5, Appendix B.2] the following form for the intrinsic 
part H in

AME ≡ (H in
AME)

E
νt of electric type

(H in
AME)

E
νt =

∑
l∈N

l∑
m=−l

αE
νlm(t)(H in

AME)
E
νlm (2.7a)

where the rank-l irreducible tensor operator is

(H in
AME)

E
νl = i−l V ′(r)

2ω
√

π(2l + 1)
[Cl × S1]l

· [(l + 1) jl−1(νr) − l jl+1(νr)] (2.7b)

( jl is the spherical Bessel function) and the amplitude is

αE
νlm(t) = 1

2

(
e−i(ωt+σl)aE

νlm + (−1)mei(ωt+σl)aE
νl,−m

)
. (2.7c)

Here σl = arg�(l + 1 + iη) is the Coulomb phase shift, η = −Z/ν
is the Sommerfeld parameter.

Likewise, the intrinsic part H in
AME ≡ (H in

AME)
M
νt of magnetic type 

is written in the form (2.7a), but with the superscript E replaced 
by the superscript M, and with the amplitude replaced by

βM
νlm(t) = 1

2

(
e−i(ωt+σl)aM

νlm − (−1)mei(ωt+σl)aM
νl,−m

)
. (2.8a)

The corresponding rank-l irreducible tensor operator is

(H in
AME)

M
νl = i−l−1 V ′(r) jl(νr)

2ω
√

π(2l + 1)

· (√(l + 1)(2l − 1)[Cl−1 × S1]l

− √
l(2l + 3)[Cl+1 × S1]l) . (2.8b)

In [2] the authors put A = B × x/2 for almost every x ∈ R
3. In 

this case div AM = 0 but div AE 	= 0; for A = AM of magnetic type, 
jl(νr) in (2.8b) is replaced by [(l + 2) jl(νr) − νr jl+1(νr)]/2.

From the point of view of energy levels, the treatment of 
H in

AME/(2c2), when considered as the O (c−2) correction to the Pauli 
operator for an electron in a potential V , is subtle in that it is 
time-dependent. We refer to [15–17], where the eigenvalue prob-
lem for the time-dependent Pauli equation is studied in detail.

2.3. Induced part

Unlike the intrinsic part of AME coupling, the induced part con-
tains the products of the time-dependent amplitudes α#

νlm(t) and 
β#

νl′m′ (t); here αM
νlm(t) (resp. βE

νlm(t)) is defined by (2.7c) (resp. 
(2.8a)), but with the superscript E (resp. M) replaced by the su-
perscript M (resp. E). However, using the symmetry properties of 
the products and interchanging the summation indices l and l′
we find that the induced part of AME coupling is actually time-
independent. As a result, Hex

AME ≡ (Hex
AME)

#
ν splits into two parts:

(Hex
AME)

#
ν = (Hex

AME)
# ′
ν + (Hex

AME)
# ′′
ν . (2.9)

For the radiation of electric type we have

(Hex
AME)

E ′
ν = (−1)ρ

2

∑
l

|aE
νl|2

·
∑

J=odd

(Hex
AME)

E
νll J 0

[
l l J
ρ −ρ 0

]
, (2.10a)

(Hex
AME)

E ′′
ν =(−1)ρ

∑
l<l′

∑
J

γ E
νll′ J (Hex

AME)
E
νll′ J 0

·
[

l l′ J
ρ −ρ 0

]
(2.10b)

with l ≥ max{1, |ρ|}. The “amplitude” is

γ E
νll′ J = 1

2

(
e−i(σl−σl′ )aE

νla
E
νl′ − (−1)l+l′+ J ei(σl−σl′ )aE

νla
E
νl′

)
(2.11)

and (Hex
AME)

E
νll′ J 0 is the 0th component of the rank- J (|l − l′| ≤ J ≤

l + l′) tensor operator

(Hex
AME)

E
νll′ J =

√
3/2 i

2πω
(−1) J+1

∑
k

ik
√

2k + 1[Ck × S1] J

·
(√

l(2l + 3)l′(2l′ + 3) jl+1(νr) jl′+1(νr)

·
[

l + 1 l′ + 1 k
0 0 0

]⎧⎨
⎩

l 1 l + 1
l′ 1 l′ + 1
J 1 k

⎫⎬
⎭

− √
l(2l + 3)(l′ + 1)(2l′ − 1) jl+1(νr) jl′−1(νr)

·
[

l + 1 l′ − 1 k
0 0 0

]⎧⎨
⎩

l 1 l + 1
l′ 1 l′ − 1
J 1 k

⎫⎬
⎭

− √
(l + 1)(2l − 1)l′(2l′ + 3) jl−1(νr) jl′+1(νr)
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