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To understand the nature of the high-temperature superconductors (cuprates) we have taken into 
consideration the interaction terms, which possess the structure of the hole–phonon (HP) and hole–
hole–phonon (HHP) type. It was shown that for the high value of the HHP potential in comparison to HP, 
the superconducting critical temperature (TC ) reaches the maximum value for the low concentration of 
holes, which fairly corresponds with the observed maximum of TC for hole-doped cuprates. The analysis 
was performed within the framework of the Eliashberg approach.

© 2017 Elsevier B.V. All rights reserved.

The high-temperature superconductivity can be observed in the 
compounds of copper and oxygen (so-called cuprates) [1,2]. The 
highest value of the critical temperature equal to 160 K was ob-
served in HgBa2Ca2Cu3O8+y compressed to 31 GPa [3]. However, 
Takeshita et al. suggest that the corrected value of TC is 153 K 
for p = 15 GPa [4]. In the cuprates the critical temperature fol-
lows the nearly parabolic dependence on the hole concentration, 
with the maximum TC at the low concentration of carriers [5]. 
This behaviour is clearly observed in: La2−xSrxCuO4, YBa2Cu3O7−y, 
Bi2Sr2CaCu2O8+y, and TlSr2CaCu2O7+y [6–8]. The existence of uni-
versal relation between the critical temperature and the hole con-
centration is related to the pairing mechanism, since the different 
combinations of constituent atoms scales only TC . Unfortunately, 
to the present day the mechanism for the high-temperature su-
perconductivity remains highly controversial [9–12]. A lot of pro-
posals are based on the pure electronic models like the Hubbard 
or Emery Hamiltonian [5,13–15]. However, the experimental data 
show also the evidence for the electron–phonon interaction. For 
example, the isotope effect for the critical temperature in the un-
derdoped region [16], and the phonon-related I − V characteristic 
obtained in the tunnelling experiment [17]. Particularly interesting 
results are obtained by using the scanning tunnelling microscopy 
which allows direct observations of phonons [18]. One should also 
mention the low-energy kink in the quasiparticle spectrum mea-
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sured by the ARPES method [19,20], and the ARPES isotope effect 
observed for the real part of the self-energy [21]. Although, the 
ARPES results for the isotope effect is strongly undermined in the 
paper [22]. Taking into account the above facts, it is interesting 
to study the hole dependence of critical temperature for the su-
perconducting condensate induced by the hole–phonon coupling, 
where the Coulomb interaction affects destructively on the local 
Cooper pairs and is responsible for the induction of the d-wave 
order parameter [5,23]. In this paper, we have considered the effec-
tive Hamiltonian of the hole–phonon (HP) and hole–hole–phonon 
(HHP) type. The analysis has been performed within the frame-
work of the Eliashberg scheme [24,25]. The general form of hole–
phonon Hamiltonian is given by:

H =
∑
kσ

εka†
kσ akσ + ω0

∑
q

b†
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where: εk = εk − μ, εk denotes the hole energy and μ is the 
chemical potential. In the case of the square lattice: εk = −tγ (k), 
where γ (k) = 2 

[
cos (kx) + cos

(
ky

)]
. The symbol t is the hopping 

integral. The hole creation operator with the momentum k and the 
spin σ is given by a†

kσ . On the other hand, b†
q is the phonon cre-

ation operator, ω0 represents the Einstein frequency. The paring 
potential for the hole–phonon and hole–hole–phonon interaction 
has been denoted by v1 and v2, respectively.
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Table 1
The electronic parameters (spin-singlet) and the electron–ion coupling constants at 
the hydrogen-molecule equilibrium: R0 = 1.41968 a0, where the symbol a0 de-
notes the Bohr radius. The electron–ion coupling constants are given by: gx =
dx/dR , where x ∈ {ε, t, U , K , J , V }. The calculations were performed for the Wan-
nier function of the form: � j (r) = A [φ j (r) − Bφl (r)

]
, where A and B are 

the normalization coefficients. 1s Slater-type orbital can be written as: φ j (r) =√
α3/π exp

[−α|r − R j |
]
, α is the inverse size of the orbital. The presented data 

are in agreement with the results obtained in [29–31]. Note that qualitatively simi-
lar results can be obtained also for the single Gaussian orbital per site [26].

ε (Ry) t (Ry) U (Ry) K (Ry) J (Ry) V (Ry)

−1.7495 −0.7377 1.6613 0.9620 0.0220 −0.0119

gε

(Ry/a0)

gt

(Ry/a0)

gU

(Ry/a0)

gK

(Ry/a0)

g J

(Ry/a0)

gV

(Ry/a0)

0.0017 0.6090 −0.1263 −0.2363 −0.0075 −0.0004

Below, we justify qualitatively the assumed form of the opera-
tor (1). Let us consider the dimer Hamiltonian, which includes all 
two-site interactions [26]:
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where c†
jσ is the electron creation operator. The spin operator is 

given by S j . The parameters of the Hamiltonian are defined by the 
following integrals:
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where the symbol � j (r) is the Wannier function.
Minimizing the total energy of the system (the energy of 

the electron system plus the energy of the ion core repulsion: 
Eic ∼ 1/R , where R is the distance between the cores), it can be 
shown that besides the on-site Coulomb repulsion also the inter-
site Coulomb interaction (K ) has to be taken into account. What 
is more important, the interaction of the electron–phonon has to 
be additionally included. The exemplary results obtained for the 
hydrogen molecule are collected in Table 1. Note that in the case 
of cuprates, also the on-site and the inter-site Coulomb repulsion 
plays the most significant role [5,15,27,28].

The Hamiltonian (2) supplemented by the term of the electron–
phonon interaction (He-ph) is very difficult to analyze. The paper 
[26] shows that for the single Gaussian orbital per site, it can be 

brought to the effective electronic (polaronic) Hamiltonian by us-
ing the generalized Lang–Firsov (displaced-oscillator) transforma-
tion [32,33]. Hence, we obtain: Hdim + He-ph → Hdim(ε
, t
, U 
, K 
,

J 
, V 
) + Eph, where the star denotes the effective parameters, and 
Eph is the energy of the phonons in the ground-state. It turns out 
that the mostly significant parameters are t
 , U 
 and K 
 . In the 
paper [26], it has been found that in the courses of the func-
tions t
 (R), U 
 (R), and K 
 (R) appear the characteristic jumps. 
For example, if the electron–phonon coupling equals 470 meV, the 
Einstein frequency is equal to 100 meV, and t
 � 250 meV (the 
order of the values characteristic for the high-temperature super-
conducting state), the jumps are observed for R � 3 Å. So rapid 
changes of the considered functions are the cause of the exis-
tence of the high values of the effective coupling constants of the 
electron–phonon and the electron–electron–phonon type: gt
 =
dt
/dR , gU 
 = dU 
/dR , and gK 
 = dK 
/dR , while |gU 
 | − |gK 
 | is 
at least the one order greater than that gt
 . Thus, the most sig-
nificant terms of the hole–phonon interaction (in the momentum 
representation) have the same form as the operator (1).

Note that the motivation of hole–phonon Hamiltonian pre-
sented above should be treated only as the guide, which enables 
the construction of the minimum effective model for the supercon-
ducting state in cuprates. The biggest drawback of our reasoning 
is connected with the atomic parameters. In the real solid, one 
should take into account the change in these parameters caused 
by the polarizability of the lattice and screening effects. For exam-
ple, the atomic U value of the 3d orbitals of Cu is on the order 
of 20 eV. In the solid this value is reduced to ∼ 8 eV. Hence, the 
question arises whether the HHP term survives in the real ma-
terial? We can not precisely answer this question because of the 
enormous mathematical difficulties. However, the experimental re-
sults suggesting the interaction between the Cooper pairs in the 
cuprates, causing the admixture of quartets to the condensate [34]. 
Note that the existence of the effective four-fermion interaction 
follows naturally from the HHP term. It suffices to use the canon-
ical Fröhlich transformations, what has been discussed in [35]. Let 
us note also that similar structure like the Hamiltonian (1) have 
the operators analyzed in the papers [36–43], where the selected 
properties of the high-temperature superconducting state were re-
constructed.

The thermodynamic properties of the system, in the framework 
of the Eliashberg approach, are determined by the matrix Green 
function [25]:
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where: i = √−1, and ωn = (π/β) (2n − 1). The inverse tempera-
ture is given by: β = 1/kB T (kB is the Boltzmann constant). The 
Green function fulfils the Dyson equation [44,45]: G−1

k (iωn) =
G−1

0k (iωn) − Mk (iωn). The symbol G0k(iωn) represents the prop-

agator of non-interacting holes: G0k(iωn) = (iωnτ0 − εkτ3)
−1; τ j

are the Pauli matrices. The open form of the matrix self-energy 
(Mk (iωn)) is extensive:
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