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We consider a quantum analogue of black holes and white holes using Bose–Einstein condensates. The 
model is described by the nonlinear Schrödinger equation with a ‘stream flow’ potential, that induces a 
spatial translation to standing waves. We then mainly consider the dynamics of dark solitons in a black 
hole or white hole flow analogue and their interactions with the event horizon. A reduced equation 
describing the position of the dark solitons was obtained using variational method. Through numerical 
computations and comparisons with the analytical approximation we show that solitons can pass through 
black hole horizons even though they will break up into several solitons after the collision. In the 
interaction with a white hole horizon, we show that solitons either pass through the horizon or will 
be destroyed by it.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The Einstein field equations from the theory of general relativ-
ity describe the fundamental interaction of gravitation as a result 
of space–time being curved by matter and energy densities [1,2]. 
All metric modelling a physical system must satisfy the field equa-
tions. A special solution for the equations under some assumptions 
was obtained by Schwarzschild [3]. It was later understood that 
the solution describes a black hole [4,5], i.e. a region of space 
with so much concentrated mass that a nearby object, including 
light, cannot escape its gravitational pull. The solution was later 
generalised to the charged black holes known as the Reissner–
Nordström black holes, which are a static solution of Einstein–
Maxwell equation [6,7], and the rotating black holes known as Kerr 
black holes [8].

Black hole candidates have been identified, e.g., in [9,10]
through electromagnetic observations by detecting their effect on 
other matter nearby (see the review [11]). The first direct observa-
tion of a binary black hole system merging to form a single black 
hole was reported in [12,13] through the detection of the so-called 
gravitational waves [14,15]. However, despite the successful detec-
tions of black holes, experiments with gravitational black holes in 
general relativity will not happen soon. It is because generating a 
black hole requires a sophisticated method to handle its extreme 
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strong gravitational fields, which is beyond the current technol-
ogy. Noting that the geometry near black holes are like spacetime 
rivers, the difficulty is overcome by turning to simulating aspects 
of general relativity through black hole analogues made of phys-
ical systems possessing an “event horizon” [16–19]. Horizons are 
“the point of no return”, that in the gravitational fields are defined 
as the point at which the gravitational pull becomes so great as to 
make escape impossible.

The idea of black hole analogues was first proposed by Un-
ruh [20] in fluid flow. It is commonly pictured as a river flowing 
towards a waterfall with the flow speed increasing in the same 
direction of the flow [21]. If the river is populated by fish with 
maximum speed c, then the event horizon is the point where the 
river flow speed is also c beyond which the fish can no longer 
swim upstream. Additionally in this analogue one can also have a 
white hole, which is modelled by a river flowing from a waterfall 
with speed flow that was initially very fast at the waterfall and 
slows down as it travels farther. The event horizon is still defined 
in the same way, but the populated fish, instead of not being able 
to leave the region beyond the horizon, in here cannot enter it. 
Experiments using this analogue have been reported in [22,23].

A black hole analogue also has been proposed using Bose–
Einstein condensates [24–27]. Experiments with a transonic flow-
ing ultracold atomic condensate have been reported as well [28,
29]. The system that is modelled by the nonlinear Schrödinger 
equation with potential, i.e. the Gross–Pitaevskii equation. The sub-
sonic and the supersonic region is obtained by introducing in-
homogeneously piecewise constant potentials admitting homoge-
neous solutions. Stationary solutions and their stability were anal-
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ysed in [30]. Time dynamics of the transonic flow was studied in 
[31]. It was observed that white hole flows typically yield undu-
lations in the supersonic region and soliton trains in the subsonic 
one, while black holes exhibit a correspondence with the so-called 
no-hair theorem in gravitational black holes [32].

It is important to note that in Bose–Einstein condensates the 
production of solitons from unstable white flows [31] is indeed 
due to nonlinearity. As it is known that defocussing Bose–Einstein 
condensates admit dark solitons (see the review [33,34]), here we 
aim to study systematically the interaction between dark solitons 
and the event horizon in both black hole and white hole flows 
in Bose–Einstein condensates (as opposed to the creation of dark 
solitons reported previously).

We show that dark solitons can pass black holes. However, the 
flows always break up the solitons into several ones. In the inter-
action with white holes, dark solitons may either pass the event 
horizon or be destroyed by it yielding shock waves or undulations 
[35,36] both in the subsonic and supersonic region. Based on a 
variational formulation, we derive an effective equation describ-
ing the soliton position, whose zeros from comparisons with the 
numerics give a sufficient condition for the destruction. We also 
discuss the applicability of the effective equation, where we obtain 
that the analysis is only valid when the relative speed between the 
subsonic and supersonic region is not too large.

2. Mathematical model

We consider the defocussing nonlinear Schrödinger equation of 
the form

iut = −iV(x)ux − 1

2
uxx − ωu + g|u|2u, (1)

with the propagation constant ω, the repulsive interaction coeffi-
cient g and the ‘stream’ potential representing the local velocity

V(x) =
{

vl, x ≤ 0,

vr, x > 0.
(2)

In previous works, motivated by the experiments [28,29] the 
black/white hole analogues were considered using V ≡ 0, ω =
ω(x), g = g(x) [30–32]. The spatially dependent ω and g provide 
the “waterfall” potential. Here, we consider constant ω and g and 
use V(x) instead to yield the “waterfall” potential. Without loss of 
generality, we take ω = g = 1 and hence the speed of sound c = 1
[37], as such that the black and white hole will correspond to the 
case of 0 < vl < 1 < vr and 0 < vr < 1 < vl , respectively.

Our theoretical setup allows us to view the interaction dynam-
ics between solitons and a black/white hole as caused solely by 
the stream velocity change. Using inhomogeneous ω and g may 
create dynamics that is present due to the spatial dependence of 
the linear potential ω and nonlinear interaction g , such as in the 
study of the so-called collisionally inhomogeneous Bose–Einstein 
condensates and nonautonomous nonlinear optics (see, e.g., [38]
and references therein). Our model has the same steady state prop-
erties as those of the model considered in [30–32], i.e. the state 
remains transonic and becomes stationary ut → 0 as t → ∞.

The governing equation (1) can be written in a hydrody-
namic representation. Using the Madelung transformation u(x, t) =
R(x, t)eiθ(t,x) and substituting it into (1) will yield

Rt = −Rxθx − 1

2
Rθxx − V(x)Rx, (3)

R(∂t + V(x)∂x)θ = 1

2

(
∂xx − θ2

x + 2 − 2R2
)

R. (4)

Equation (3) can be interpreted as the continuity equation (i.e. the 
fluid conservation equation) for the density R2 and the phase θx . 

The steady-state solutions Rt = θt = 0 can be analysed by integrat-
ing (3) to obtain

θx = −V(x)

(
1 − 1

R2

)
,

where we have assumed that V(x) is piecewise-constant and as 
x → ±∞, R2 → 1 and φx → 0. Substituting it into the time-
independent equation of (4) will give

Rxx = −V(x)

(
R − 1

R3

)
− 2(1 − R2)R. (5)

The phase-plane analysis of (5) is simple through constructing a 
composite phase-portrait [38]. One can check that in the subsonic 
and supersonic regime, R = 1 is respectively a saddle point and a 
centre, i.e. the same as the observation in [30].

When V(x) ≡ V = const., Eq. (1) has a dark soliton solution 
of the form

u(x, t) = A tanh A (x − x0) + iv, (6)

with x0 = (v + V )t and A2 + v2 = 1. The soliton is black when 
v = 0. It is clear that V acts as a stream flow that drifts the soli-
ton with relative velocity v + V . One can also note that for any 
|V | < 1, there is a dark soliton with “internal” velocity |v| > |V |, 
such that the soliton is travelling in the opposite direction to the 
stream flow. When |V | > 1, there is no longer standing soliton. The 
soliton is therefore like a ‘quantum fish’ swimming in a ‘quantum 
waterfall’.

In the following we will study the influence of the even horizon 
that is located at x = 0 to the soliton. Under the inhomogeneous 
potential (2), one can study analytically the dynamics of the dark 
soliton adiabatically using variational methods as in, e.g., [39]. Us-
ing the ansatz (6) where x0 is now unknown and a function of t , 
the position of the dark soliton is described by

x0t = v + vl + vr

2
− vl − vr

2
tanh[

√
1 − v2x0]. (7)

Equation (7) has one and one only equilibrium given by x0t = 0
that exists if the inequality

−1 <
2v + vl + vr

vl − vr
< 1 (8)

is satisfied. In this case, a moving soliton may stop. The stability of 
the equilibrium is clearly either an attractor or a repeller.

In the following we will solve the governing equations numeri-
cally and compare it with the analytical approximation above.

3. Discussion

First, we consider black hole configurations. Shown in Fig. 1 is 
the top view of two time dynamics of a dark soliton that is in-
coming towards the event horizon at x = 0. In both cases, in the 
supersonic regime vr = 1.5. For the first simulation, we choose 
the condition that the fluid in the region x < 0 does not flow, i.e. 
vl = 0. The dark soliton is instead travelling with velocity v = 0.9
towards the origin. Due to the collision with the event horizon, 
one can observe that the soliton breaks up into three dark soli-
tons after impact. Shock wave is also generated in the supersonic 
regime behind the middle soliton. However, the wave cannot cross 
the event horizon. Additionally we observe that the background 
|ψ | = 1 behaves as an ‘attractor’, that pushes all the disturbances 
away towards x → ±∞, which is in agreement with the ‘no-hair 
theorem’ analogue reported in [32].

We also plot the approximation (7) as dashed line, where one 
can see that it approximates well the position of one of the three 
dark solitons.
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