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1. Introduction

The phase-space formulation of quantum mechanics is still in 
the focus of research interest, as it has numerous important appli-
cations [1–4]. Quasi-probability distributions such as the Wigner 
function [5], the Husimi Q-function [6,7] and Glauber–Sudarshan 
P-function [8,9] describe completely the states of a quantum sys-
tem and they are widely used for calculations in various physical 
problems [10–15]. They have proven to be very useful in quantum 
optics [16–18]. A probability representation with fair probability 
distributions defined on the phase space has also been introduced 
in the literature [19–21]. A probability distribution called the sym-
plectic tomogram was introduced in connection with measuring 
the quantum states of light by means of optical homodyne to-
mography [22–24]. The properties of this tomographic probability 
representation are discussed in detail in review [25].

In order to use quasi-probability distributions and tomograms 
in physical problems the operators modeling observable physi-
cal quantities have to be represented. [26]. This representation is 
called the symbol of operators. The algebra of symbols correspond-
ing all possible manipulations with operators on the Hilbert space 
can be constructed by applying the general star-product scheme 
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[27–29]. Within this formalism one can relate operators to their 
symbols using dequantizers and can reconstruct operators from 
their symbols using quantizers. The relations between different 
phase-space representations can be also determined in this frame-
work [29–32].

All these ideas can be extended to finite dimensional quantum 
systems. Finding a complete, continuous Wigner function for such 
system is still a subject of investigations [33–35]. Beside these ef-
forts there is an increasing interest in the construction of discrete 
phase spaces and Wigner functions owing to their possible appli-
cations in quantum information science. There are several ways of 
constructing such a phase space and the definition of a discrete 
Wigner function in this space is still ambiguous [36–47]. The ap-
proach introduced in [40] has proven to be well suited to study 
various quantum information problems [48]. In this method, an 
N × N phase space is defined for N dimensional quantum sys-
tems, where N is a power of a prime number. This is the case, e.g. 
for qubit systems. This phase space has the same geometric prop-
erties as those of the ordinary infinite dimensional phase space. 
Wigner functions can be defined in this space using Hermitian op-
erators connected to special mutually orthogonal sets of parallel 
lines called striations. There exist N + 1 different striations and 
the bases associated with them are mutually unbiased [4,43,49,50]. 
Such discrete Wigner functions have the same essential properties 
as their continuous counterparts. The most interesting one from 
the point of view of tomographic measurements is that the sum of 
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values of a Wigner function along any line in phase space is equal 
to the probability of detecting the basis state associated with the 
line [48].

Tomographic probability distributions called spin tomograms 
[51–54], and unitary matrix tomograms [55] have been also devel-
oped for finite dimensional spin systems. The star product formal-
ism of symbols for N-dimensional systems is described in detail in 
[56]. Using this formalism the relations between tomograms and 
Wigner functions for one and two qubits have been determined 
[57,58,56].

In this paper we consider the problem of finding and charac-
terizing minimal sets of quantizers and dequantizers for finite di-
mensional quantum systems. We determine the general properties 
of such sets. Given minimal sets of dequantizers and quantizers for 
a particular quantum system, any type of symbols of the operators 
and the quantum states consisting of minimal elements, e.g., dis-
crete Wigner functions, can be treated in a common framework. 
We find explicit expressions describing all the minimal self-dual 
sets of dequantizers and quantizers for a qubit system.

The paper is organized as follows. In Section 2 we present the 
general formalism of mapping operators onto functions based on 
dequantizers and quantizers. The general properties of minimal 
sets of dequantizers and quantizers for N dimensional systems is 
described in Section 3. In Section 4 the explicit form of all minimal 
self-dual sets of dequantizers and quantizers for a qubit system is 
found.

2. Dequantizers and quantizers

In this section we summarize the general formalism of using 
c-number functions instead of operators to describe quantum sys-
tems [26–29]. Let Â be a Hermitian operator acting on a Hilbert 
space H so it can be an operator describing an observable or the 
density operator ρ̂ of the quantum system. Suppose we have a set 
of linear operators Û (x) acting on H and labelled by the param-
eter x that is an n-dimensional vector x = (x1, x2, . . . , xn) in the 
general case. One can construct a c-number function f Â(x) called 
the symbol of the operator Â using the definition

f Â(x) = Tr[ ÂÛ (x)]. (1)

This linear mapping of operators onto functions is invertible if 
there is a set of operators D̂(x) acting on H such that

Â =
∫

f Â(x)D̂(x)dx. (2)

The operators Û (x) and D̂(x) are called dequantizers and quan-
tizers, respectively. In this formalism the operation for functions 
corresponding to the multiplication of Â and B̂ is called star prod-
uct and defined by

f Â B̂(x) = f Â(x) ∗ f B̂(x) = Tr[ Â B̂ Û (x)]. (3)

Multiplying Eq. (2) by the operator Û (x′) and taking the trace we 
get

f Â(x′) =
∫

f Â(x)Tr[D̂(x)Û (x′)]dx. (4)

For continuous systems the operators Û (x) are defined in the 
usual phase space with the coordinates (q, p) while for discrete 
systems x can be both discrete and continuous as in the case of 
spin tomograms, or it can be purely discrete as in the case of 
discrete Wigner functions defined e.g. in [40]. In the latter case 
Eqs. (2) and (4) can be written as

Â =
N∑

k=1

f Â(k)D̂(k) (5)

and

f Â(k′) =
N∑

k=1

f Â(k)Tr[D̂(k)Û (k′)], (6)

respectively.
For a d dimensional discrete quantum system the term minimal 

set of quantizers and dequantizers is introduced for sets contain-
ing d2 linearly independent operators. From Eq. (6) it follows that 
the quantizer and dequantizer operators of such sets satisfy the 
condition

Tr
(

D̂(k)Û (k′)
) = δ(k,k′). (7)

For some special set of dequantizers the symbols are called the 
Wigner function [40]. These dequantizers are Hermitian operators 
and coincide with the corresponding quantizers. So they form a 
self-dual system.

3. Minimal sets of dequantizers and quantizers

In this section we consider the general properties of minimal 
sets of quantizers and dequantizers for N-dimensional systems.

Let us analyze first a two-dimensional qubit system. For this 
system the minimal set of dequantizers consists of four linearly 
independent operators Û (k) that can be represented by four matri-
ces

Û (k) =
(

U (k)
11 U (k)

12

U (k)
21 U (k)

22

)
, k = 1,2,3,4. (8)

First we address the problem of determining the four corre-
sponding quantizers

D̂(k) =
(

D(k)
11 D(k)

12

D(k)
21 D(k)

22

)
, k = 1,2,3,4 (9)

satisfying Eq. (7) that can be written using the notations of Eqs. (8)
and (9) as

Tr
(
Û (k) D̂(k′)) = δ(k,k′). (10)

We assume that the dequantizers U (k) are known.
Let us introduce the operator

Â =

⎛
⎜⎜⎜⎜⎜⎝

U (1)
11 U (1)

21 U (1)
12 U (1)

22

U (2)
11 U (2)

21 U (2)
12 U (2)

22

U (3)
11 U (3)

21 U (3)
12 U (3)

22

U (4)
11 U (4)

21 U (4)
12 U (4)

22

⎞
⎟⎟⎟⎟⎟⎠ , m,n = 1,2,3,4 (11)

built up from the elements of the four dequantizer operators and 
the operator

B̂ =

⎛
⎜⎜⎜⎜⎜⎝

D(1)
11 D(1)

12 D(1)
21 D(1)

22

D(2)
11 D(2)

12 D(2)
21 D(2)

22

D(3)
11 D(3)

12 D(3)
21 D(3)

22

D(4)
11 D(4)

12 D(4)
21 D(4)

22

⎞
⎟⎟⎟⎟⎟⎠ (12)

containing the elements of the four quantizer operators. It is easy 
to see that the equation (10) is equivalent to

Â B̂ T = Î (13)

As the operators Û (k) are linearly independent therefore the de-
terminant of the matrix Â is not equal to zero. From Eq. (13) it 
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