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Nonlinear electrostatic structures are investigated in a non-uniform mixture of two ionized gases which 
account for the effects of electron trapping, nonextensivity and field-aligned shear flow of one ion species 
relative to the other. Since electron trapping, a prerequisite for structure formation, introduces a stronger 
nonlinearity therefore stationary descriptions are represented by a Schamel rather than a Korteweg–
de Vries equation. For a given solitary pulse width, the amplitude is hence consequently larger. The shear 
flow also enhances the amplitude while increased population of the energetic electrons is destructive 
for the solitary structures. This theoretical model is a general one and here it is applied to a mixture of 
oxygen–hydrogen plasma of the F -region ionosphere for illustration.

© 2017 Elsevier B.V. All rights reserved.

Nonlinear electrostatic solitary structures formed by the per-
turbations of an arbitrary amplitude have been investigated using 
energy integral formalism in fully ionized gases (or plasmas) [1–6]. 
In the small amplitude limit, the perturbation expansion method 
has been employed to investigate ion acoustic solitary structures 
in an unmagnetized and magnetized plasmas [7–9]. The same ap-
proaches have also been used by many authors to investigate the 
soliton formation in the dusty plasmas [10,11] and in fluids of 
electrons, positrons and ions [6]. Ion acoustic wave is a fundamen-
tal low frequency mode of homogeneous plasmas which couples 
with the low frequency drift wave [12,13] in non-uniform plas-
mas. The nonlinear electrostatic structures have been observed in 
both Laboratory [14,15] as well as Space plasmas [16,17]. It is well-
known that the nonlinear ion acoustic waves (IAWs) form KdV 
solitons in homogeneous plasmas.

Long ago [18], it was shown that electrons which have lesser 
kinetic energy are trapped in the nonlinear wave potential. This 
leads to the confinement of electrons by the wave potential to 
a region of the phase space where they oscillate. The amplitude, 
thickness and speed of the solitary wave depend crucially upon the 
population of the trapped electrons. The particle trapping has been 
observed in both Laboratory and Space plasmas [18–23]. Schamel 
developed the pseudo-potential method to construct the equilib-
rium solutions which is considered as a breakthrough in the the-
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ory of holes or phase space vortices [18,24–26]. Several authors 
have investigated the effects of the trapped electrons on solitons 
in electron–ion as well as in dusty plasmas [27–29].

Schamel et al. [30] presented a detailed analysis of the electron 
trapping nonlinearity in relation with the existence of coherent 
stationary electro-static structures in a current-carrying homoge-
neous plasma. They could show that such structures are nonlinear 
in character represented by a continuum of modes which are gov-
erned by a nonlinear dispersion relation. The latter resembles a 
van Kampen continuum but it is in fact determined by the trap-
ping nonlinearity. This implies that the well-known linear modes, 
as coherent single mode structures, must be interpreted in the 
nonlinear sense. As discrete modes they are imbedded in the non-
linear continuum. Hence trapping and coherency, our main topic, 
are inextricably linked and can therefore not be treated as sepa-
rate issues. This is often overlooked in conventional wave analyses 
which rest on perturbative nonlinear models in which linear wave 
theory provides the lowest order approximations.

In case of nonuniformity of plasma, the drift kinetic equation 
is a useful tool to study the low-frequency (ω � �i ) drift waves 
and their coupling with the ion acoustic wave. Eliasson and Shukla 
[31] presented a comprehensive review about the formation and 
properties of the coherent structures in the presence of the elec-
tron trapping. In a single ion component plasma, they obtained 
stationary solution of nonlinear drift waves using quasi-neutrality 
in the limit |∂t | � �i , k⊥ρe � k⊥ρi � 1 and cs � ω/k‖ . Several 
authors used drift kinetic equation for electrons to investigate the 
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coherent structures defined by Schamel-type modified Kadomtsev–
Petviashvili equation [32] to incorporate the electron trapping non-
linearity and the perpendicular space dependencies [31,33] and 
references therein. Several investigations have appeared in the lit-
erature on the nonlinear coherent structures and electron trapping 
in different limits [18,27,28,31,33–35].

The particle trapping is a source of free energy in the system. 
The sheared flow is an additional source of free energy in plasmas 
and D’Angelo [36] pointed out that it can produce purely growing 
electrostatic instability. In this case, the IAW does not appear in 
the magnetized plasma. However if the shear flow is negative then 
the IAW can propagate in plasma and its linear dispersion relation 
is modified [37]. Nonlinear dynamics of the shear flow modified 
the IAW has also been investigated [8].

In a mixture of ionized gases, if one of the species has sheared 
flow such as in the upper ionosphere, the oscillatory instabilities 
can appear instead of a purely growing D’Angelo mode. In a plasma 
of two gases, four modes of the ion acoustic waves will couple 
due to the shear flow; one corresponding to the lighter ions and 
the other corresponding to the heavier ions. If the heavier ions 
have field-aligned shear flow, then one of the branches of the ion 
acoustic wave can become unstable under a certain condition.

In this work, we investigate the effects of the trapped elec-
trons and field-aligned shear flow of the heavier ions into the 
non-uniform stationary plasma of lighter ions. This complex non-
linear system of the magneto-fluids is analyzed by using the small 
amplitude limit and local approximation. The perturbed densities 
of the ions of the two charged gases are estimated by using the 
continuity equations up to ε2 order, where ε � 1 is the smallness 
parameter which determines the strength of the nonlinearity. The 
four coupled linear ion acoustic modes are also analyzed briefly.

The aim of present study is to investigate the linear and non-
linear dynamics of the electrostatic IAW in a system of two mixed 
ionized gases in the presence of trapped electrons and field-
aligned shear flow of one of the ion species. The plasma of two 
mixed gases is magnetized with constant field B0 = B0zz. We label 
lighter ions with subscript “a” and heavier ions with subscript “b”. 
It is assumed that the heavier ions fluid has field-aligned shear 
flow such that vb0= v0(x)z = v0. The subscript naught (0) denotes 
the zero order quantities.

The continuity equation for the jth ions species ( j = a, b) is 
given by:

∂n j

∂t
+ ∇ · (n jv j) = 0, (1)

and the equation of motion for ions can be expressed as,

(
∂

∂t
+ v j · ∇)v j = e

m j
(E + v j × B

c
), (2)

assuming vtikz � |∂t |, ω, which is valid if the shear flow is in the 
negative direction and Ti < Te holds [8,37].

The equation for the perpendicular component of ions’ velocity 
under the drift approximation |∂/∂t| � � j (� j = eB0/m jc repre-
sents the ions’ gyro-frequency) can be written as,

v j⊥ = c

B0
ẑ × ∇⊥ϕ − c

� j B0

[
∂

∂t
+ v j · ∇⊥

]
∇⊥ϕ. (3)

Here vE = c/B0(ẑ ×∇⊥ϕ) and vpj = − c
� j B0

[ ∂
∂t + v j ·∇⊥]∇⊥ϕ rep-

resent the electric and polarization drift of the positive ions. The 
parallel velocity component of the ions “a” is:(

∂

∂t
+ vE · ∇

)
va‖ · ẑ = − e

ma
∇ϕ · ẑ. (4)

The shear flow of the lighter ions parallel to B0 leads to the fol-
lowing parallel velocity component of the fluid “b”:

(
∂

∂t
+ vE · ∇ + v0∂‖

)
vb‖ · ẑ = − e

mb
∇ϕ · ẑ + c

B0
∇⊥ϕ

dv0

dx
· ẑ.

(5)

The continuity equations for ions “a” and “b” can be written, re-
spectively, as,

dna

dt
− e

Te0
ρ2

sa
d

dt
∇2⊥ϕ + cna0

B0
∇⊥ϕ(κna) + ∂‖

(
na va‖

) = 0, (6)

and

dnb

dt
− e

Te0
ρ2

sb
d

dt

(
∇2⊥ϕ

)
+ cnb0

B0
∇⊥ϕ(κnb) + ∂‖

(
nb vb‖

) = 0,

(7)

where d/dt = (∂/∂t + vE · ∇) is the total time derivative, ρsj =
csj/� j and csj = (Te/m j)

1/2 represent the ions’ gyroradius and 
acoustic speed, respectively and κnj = 1

n j0

∣∣dn j0/dx
∣∣ is the inverse 

of the density gradient scale length. In the magnetized plasmas, 
λ2

De < ρ2
s holds therefore, we use the following quasi-neutrality 

condition

na + nb = ne. (8)

The electron distribution function splits into two parts; one for the 
free electrons fef and the other for the trapped electrons fet as 
[29,38],

fe(x, v) = fef (x, v) + fet(x, v) (9)

The free electrons are those having kinetic energies greater than 
the wave potential and are described by the following distribution,

fef (x, v) = Cq

[
1 − (q − 1)

(
me v2

2K B Tef
− eϕ

K B Tef

)] 1
q−1

for v >
√

2eϕ/me. (10)

The trapped electrons with their kinetic energies less than the 
wave potential energy bounce back and forth in the trough of the 
potential well and follow the trapped velocity distribution which 
is given by [29,38]:

fet(x, v) = Cq

[
1 − β(q − 1)

{
me v2

2K B Tet
− eϕ

K B Tet

}] 1
q−1

for v ≤ √
2eϕ/me, (11)

where the constant of normalization is Cq = ne0
�[1/(1−q)]

�[1/(1−q)−1/2] ×√
me(1 − q)/2π K B Te for −1 < q < 1 and Cq = ne0(

1+q
2 ) ×

�[1/(1−q)+1/2]
�[1/(1−q)]

√
me(q − 1)/2π K B Te for q > 1. The parameter q is 

called the entropic index which determines the strength of the 
nonextensivity. It can be noted that Tet and Tef in Eqs. (10)–(11)
correspond to the kinetic temperature of the free and trapped elec-
trons in the absence of the nonextensive effects; i.e., q → 1. The 
parameter β = Tef /Tet represents the free to trapped electrons 
temperature ratio which measures the trapped electrons in the 
system. In the limits q > 1 or −1 < q < 1, the distribution function 
in (9) exhibits the thermal cutoffs and for the latter case that is for 
−1 < q < +1, the hot electron number density including trapped 
electrons can be written as [38]:

ne = ne0{1 + 1 + q

2



− 4(1 − β)(1 − q)1/2

3
√

π

�[1/(1 − q)]
�[(1 + q)/(2 − 2q)]


3/2}. (12)

In equation (12) the quantity ne0 is the equilibrium number den-
sity of the electrons, � is the standard gamma function and 
 =
eϕ/K B Tef is the normalized potential.
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