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We investigate the electronic states of a zigzag graphene nanoribbon in the presence of mutually 
perpendicular electric and magnetic fields. We find that both edge and bulk states are localized in the 
vicinity of zero energy, leading to spin-polarized states and quantized transport in the system. A quantum 
spin Hall phase is characterized by helical edge and tilted bulk states. By tuning Fermi energy and 
in-plane electric field, a topological phase transition is also realized. The electronic states support the 
transport of spin and charge, and the corresponding spin and charge Hall conductivities are calculated in 
a four-terminal geometry.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The processing of graphite has made the isolation of two-
dimensional graphene sheets [1]. This system has been studied 
theoretically and implied nanoelectronic devices [2–5]. The mate-
rial is unique because the underlying honeycomb lattice has a band 
structure with Dirac points at the corners of the Brillouin zone, in 
which there are two inequivalent Dirac points. In this low-energy 
region, the system can be described by the Dirac equation.

Under a perpendicular magnetic field, the Landau levels (LLs) 
of graphene are spaced unevenly due to the chiral nature of car-
riers, giving rise to quantum Hall (QH) effect [6–8]. The quan-
tized Hall conductivity is σxy = ν1e2/h among filling factors ν1 =
±4(n +1/2), where h is Planck’s constant, e is electron charge, n is 
an integer and the factor 4 is resulted from spin and valley degen-
eracy [2,6,7,9]. The existence of the quantum spin Hall (QSH) effect 
[10–12] was first proposed in a graphene film, in which the spin–
orbit interaction opened a small band gap [13]. Soon afterwards, 
a quantized longitudinal resistance platform was observed owing 
to the QSH effect which was triumphantly achieved in CdTe/HgTe 
quantum wells [14].

The zigzag graphene nanoribbon is known to have flat bands 
connecting two valleys, corresponding to the localized edge states 
[15–17]. It is found that a bulk energy gap is opened in zigzag-
edged half-infinite graphene [18,19]. Recently, graphene nanorib-
bon in the presence of crossed uniform electric and magnetic fields 
is shown to exhibit dramatic changes in band structure [20] and 
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transport properties [21]. Lukose et al. [20] found a tilted LL of 
graphene when the ratio of electric field to magnetic field ex-
ceeds a certain critical value, which is different from the LLs of 
two-dimensional electron gas. Subsequently, the properties of a 
graphene nanoribbon [22] in both in-plane electric bias and per-
pendicular magnetic field are investigated. It exhibited tunable 
shortcut edge states yielding some interesting transport effects. 
Moreover, the even symmetry of the energy band in armchair 
graphene nanoribbon preserves with each of the electric and mag-
netic fields applied. However, when the two fields are applied 
together, they break both the time reversal symmetry and the in-
version symmetry and reverse the dispersion parity, resulting in 
the mixture of the electron and hole subbands near the zero en-
ergy [21].

In this paper, we study the electronic states caused by the tilted 
LLs of zigzag graphene nanoribbon under mutually perpendicular 
electric and magnetic fields [Fig. 1]. The states in the vicinity of 
zero energy are localized and can give rise to a QSH state which 
belongs to both edge and tilted bulk states. A topological phase 
transition is shown by changing Fermi energy or the in-plane elec-
tric field. The spin current is also generated in a four-terminal 
geometry.

2. Models and methods

We begin with the monolayer graphene nanoribbon subjected 
to a perpendicular magnetic field B = (0, 0, −B) and an in-plane 
uniform electric field ε. The Hamiltonian of this tight-binding 
model can be written as
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Fig. 1. Schematic of a zigzag graphene nanoribbon along x axis threaded by an in-
plane uniform electric field ε and perpendicular magnetic field B. The direction 
of the in-plane field is indicated by the blue arrows. The width of nanoribbon is 
L = (3N/4 − 1)a = 21.2 nm with N = 200 and a = 0.142 nm. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

H = −t
∑

<i, j>,σ

eiφi j (C †
i,σ C j,σ + H .c.) + M

∑

i,σ

σzC †
i,σ Ci,σ

+
∑

i,σ

εi C
†
i,σ Ci,σ . (1)

The first term in Hamiltonian describes the nearest-neighbor hop-
ping with t being the amplitude of the hopping energy and C †

i,σ
(Ci,σ ) being the electron creation (annihilation) operator on site i
with spin index σ and φi j being the magnetic flux. Because elec-

tron hopping is from site j to site i, there comes φi j = ∫ i
j A · dr/φ0

with the Landau gauge A = (0, −Bx, 0) and φ0 = h̄/e. The sec-
ond term corresponds to the Zeeman splitting with strength M , 
in which σz is the Pauli spin matrix. The third term represents 
the in-plane electric field ε along the y direction with on-site 
energy εi . The on-site energy is εi = eU [1 − 3a(i − 1)/2L]/2 for 
i = 1, 3, ..., N −1 and εi = eU [1 − (3i −4)a/2L]/2 for i = 2, 4, ..., N , 
where U is the electric bias, a is the lattice constant and L is the 
width of ribbon.

In order to explore transport properties, we use the Lattice 
Green’s function method [23,24] to compute the two-terminal con-
ductance. In the tight-binding system, the transmission coefficient 
from terminals q to p is given by T pq =Tr[�p G pq�qG†

pq], where 
�p(E) = i(�p − �

†
p) is the broadening function of terminal p and 

the self-energy �p is related to elements of the Green’s function 
between sites at the surface of the terminal. G pq(E) = [E − H D −
�L(E) − �R(E)]−1 is the Green function containing sites in the 
central device that connects to terminals p and q.

3. Results and discussions

In our numerical calculations, the energy spectrum is obtained 
by directly diagonalizing the Hamiltonian equation (1) with the 
consideration that all energies and lengths are expressed in units 
of the hopping energy t (t = 2.71 eV) and the lattice constant a
(a = 0.142 nm), respectively. The system enters the Landau quanti-
zation regime only if the nanoribbon width L is much larger than 
the magnetic length [25] lB = √

h̄/eB , i.e. L � lB , where B is the 
magnetic field. The calculated energy spectra for different widths 
and different magnetic fields show that the eigenvalues are scal-
ing functions of B and L. These scaling functions suggest that the 
same behavior of the energy spectrum be expected at small size 
but a large magnetic field. Therefore, we only consider a smaller 
system and external fields even higher than available in experi-
ments. Hereafter, the width of graphene nanoribbon is denoted by 
L = (3N/4 − 1)a = 21.2 nm ≈ 10lB , where N = 200 denotes the 
total number of atomic sites in the y direction of the graphene 
nanoribbon, and the magnetic flux is φ = 0.002.

It was proved analytically that in the low-energy range of 
graphene spectrum, the spacing scales among LLs decrease in both 

Fig. 2. (a) and (b): Energy dispersion of zigzag-edged graphene nanoribbon at fixed 
magnetic flux φ = 0.002 and fixed electric bias U = 0.01 for (a) M = 0 and (b) 
M = 0.015. The red and black lines denote bands of spin-up and spin-down states. 
The part of inclined lines are labeled “bulk LL” and parallel lines are labeled “edge 
states”. (c) and (d): The probability density distributions of electronic states inter-
sected by dashed lines in energy spectrum. (e) and (f): Two-terminal conductances 
corresponding to (a) and (b). (g) and (h): Schematic propagations of conducting 
channels labeled by the letters in (b). (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)

conduction and valence bands as the electric field increases [20], 
and all LLs incline for a critical value of the ratio β = ε/v F B =
SU/(ev F Lφ) (φ = B S , S = 3

√
3a2/2, U = eεL) of the electric filed 

to magnetic field. The titled levels exist when the value β is 
smaller than an unity by the tight-binding calculation [22].

Applying an in-plane electric and a perpendicular magnetic 
fields on the zigzag graphene nanoribbon, the energy spectrum 
distortion destroys the electron–hole symmetry and time-reversal 
symmetry but the odd symmetry Eh,k = −Ee,−k (h, e and k rep-
resent hole, electron and wave vector respectively) of the energy 
spectrum are retained [21] as illustrated in Fig. 2(a). We find that 
the tilted LLs are twice degenerate due to the spin degeneracy 
and the corresponding two-terminal conductance is G = 2ne2/h
(n = 1, 2, 3, · · · ) at a fixed electric bias U = 0.01 (corresponding 
to ε = 1.3 × 106 V/m and β = 0.01) without the Zeeman splitting.

When the Zeeman splitting is taken into account, the Fermi en-
ergy is within the gap E F < |M − U/2| and intersect four energy 
bands labeled by letters A–D in Fig. 2(b). The electron probability 
densities and flowing directions of the four representative states 
are shown in Figs. 2(c) and 2(g). The edge modes labeled A and B
are located on the lower boundary, and the others are located on 
the upper boundary. Furthermore, they are helical states formed by 
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