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For an isotropic quantum resonant scatterer, such as a quantum dot embedded in host semiconductors, 
we propose a method to achieve resonant electron scattering by taking physical quantities into account 
through the second-order expansion. All needed physical information for spherical harmonic channels in 
anomalous quantum resonant scattering is revealed in a parameter space as the size of quantum scatterer 
is comparable to the de Broglie wavelength of incoming matter wave. Our results provide the guideline 
to realize quantum resonant scatterers with state-of-the-art semiconductor heterostructure technology.

© 2017 Published by Elsevier B.V.

1. Introduction

Wave phenomena from different origins share the same princi-
ple of superposition, which can be controlled by properly designed 
structures. In optics, the study on light scattering by subwave-
length particles can be traced back to Lord Rayleigh in early devel-
opments to explain the colors in the sky [1]. Based on Lorenz–Mie 
theory, anomalous light scattering in small particles due to the lo-
calized surface plasmonic mode is found when the permittivity, ε , 
of a lossless particle at subwavelength scale meets the resonant 
condition, i.e., ε = −εm (l + 1)/l. Here, εm corresponds to the per-
mittivity of the surrounding environment, and l denotes the index 
for spherical harmonics channels ranging from l = 1, 2, . . .∞ [2,
3]. Nowadays, with state-of-the-art nano-structured technologies, 
having an efficient way to manipulate and design nano-optics is 
desirable. Due to such a great enhancement in the near-field, lots 
of potential applications have been demonstrated on light harvest-
ing, sensing, medical treatment and so on [4–10].

Based on the analogies between classical electrodynamics 
and quantum mechanics, applying concepts from electromagnetic 
metamaterials to other areas of physics has received considerable 
attention [11–15]. For barrier-well potentials formed in a core-
shell nano-particle embedded in a host semiconductor material, 
the cloaking as well as invisibility for the electronic transport 
are revealed by the scattering cancellation method [16–18]. Quan-
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tum cloaking can enhance carrier mobility [19] and may be re-
alized in various solid state systems, such as quantum dots and 
graphenes [20,21].

Even though similar approaches can be applied both to clas-
sical electromagnetic and quantum matter waves, the underlying 
physical interpretations are different. Through the similar mathe-
matical structure between the Helmholtz wave equation and time-
independent Schrödinger equation, there exists the correspondence 
between the permittivity for electric fields in dielectric materials to 
the effective mass for quantum wavefunction in potentials. Never-
theless, unlike the classical electrodynamics, the index for spheri-
cal harmonics channels in quantum waves starts from l = 0, which 
corresponds to the s-wave scattering. Then, the effective mass in-
formation (m∗) for a quantum scatterer is totally missing when 
l = 0, if we only apply the first order expansion to meet the reso-
nant condition.

To solve this problem, we can not rely on the conventional 
Born approximation that only deals with weak scattering interac-
tion [22]. Physically, the results obtained by first approximation 
indicate that a quantum particle would be intrinsically deflected 
with a small angled to the original momentum direction. However, 
in this work, to meet the quantum resonant scattering, a maxi-
mized scattering is expected to accompany with a large momen-
tum transfer. To go beyond the Born approximation, we expand 
the corresponding spherical Bessel and Neumann functions up to 
the second-order terms, only with which we can include effective 
mass and potential into the possible implementation for quantum 
resonant scatterers. By parameterizing system variables, we show 
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Fig. 1. (Color online.) A schematic view of matter wave scattering by a spherical 
quantum resonant scatterer. The isotropic and homogeneous effective mass and po-
tential energy inside the scatterer and in the environment are denoted as (m1, V 1)

and (m0, V 0 = 0), respectively. An incident plane wave for the transport electron, 
�i , is assumed to propagate along the z-axis.

a contour plot including all system parameters to satisfy the reso-
nant condition for various quantum angular momentum channels 
(l = 0, 1, 2, ..). A remarkable agreement is also shown in the com-
parison of our analytical results to the full numerical calculations.

This work seeks for opposite extreme limit in elastic scattering 
process, quantum resonance scattering, since it can make quan-
tum particles scattered to large directions, equivalent to large mo-
mentum transfer occurred with some non-negligible probability. 
Such anomalous quantum scatterers are desirable for a variety of 
applications, such as the enhancement of thermoelectric power 
factor by embedding resonant carriers in thermoelectric materi-
als [23–25], the scanning probes for bosonic atom collisions at 
ultracold temperatures [26,27], and the observation of quantum 
proximity resonances [28]. A realistic case has been proposed in 
semiconductor quantum dots, such as GaAs/Ga1−xAlxAs materi-
als [29]. In general, in the vicinity of a resonance with respect to 
energy it is not always possible to employ a characteristic Breit–
Wigner formula for the scattering cross section [30], as the profile 
becomes an symmetric one [31].

By applying our result to a quantum scatterer in the shape 
of a finite-size sphere, such as a quantum dot, with an isotropic 
and homogeneous effective mass and potential for the electron 
transport in a host semiconductor, we also propose a set of al-
loy semiconductor materials to achieve the s-wave resonance. Our 
approach provides a compact solution to the practical question on 
how to build a resonant quantum scatterer precisely for various 
angular momentum channels when the real material properties are 
taken into consideration.

2. Theory

We start our analysis by studying the scattering properties of a 
finite-size spherical scatterer of the radius a, which can be consid-
ered as a quantum dot, a dopant or a nanoparticle, see Fig. 1. Such 
quantum scatterer has isotropic and homogeneous effective mass 
and local potential, denoted as m1 and V 1, respectively. The en-
vironment could be a host semiconductor with its effective mass 
m0 and potential V 0. Without loss of generality, the potential in 
the surrounding environment can be set to zero, i.e., V 0 = 0. The 
incident quantum matter wave of a single transport electron is as-
sumed to be a plane wave propagating along the z direction, which 
can be described by the effective Schrödinger equation in time-
independent form:

− h̄2

2
�∇ · [ 1

m∗(�r) �∇ψ] + [V (�r) − E]ψ = 0. (1)

Here, the spatial wave function ψ , the effective mass m∗ , the ef-
fective potential V , and the total energy E are denoted for a single 

electron, respectively. In the following, we also restrict our study 
to a Hermitian quantum system with real potentials only. In this 
scenario, the total probability for the wave function of our trans-
port electron is conserved due to only elastic scattering processes 
involved. To have a real value in the propagation wavenumber, 
k0 = √

2m0 E/h̄, both the incident energy E and the effective mass 
in the environment m0 are taken to be positive.

As we are dealing with a central scattering potential having 
rotational invariance, the Hamiltonian commutes with L2 and Lz , 
where L is the quantum angular momentum operator. Thus, we 
can use the eigenstate of L2 to express the wave function in our 
scattering system. By using these eigenstates, we express the en-
vironmental wave function, ψenv , including incident plane wave 
and scattering wave: ψenv (r, θ) = eikr cos θ + ψscat = ∑l=∞

l=0 il(2l +
1)[ jl(k0a) + ascat

l h(1)(k0a)]Pl(cos θ). Here, l denotes the quantum 
angular momentum for the corresponding channel, jl is spherical 
Bessel function, ascat

l represents scattering coefficient determined 
by the radiating boundary conditions, h(1) is the first-kind of 
spherical Hankel function due to its out-going property for scatter-
ing matter wave, and Pl(cos θ) is the Legendre polynomial. Mean-
while, inside the scatterer, there exists a transmitted wave written 
as ψtr(r, θ) = ∑l=∞

l=0 il(2l +1)tl jl(k1r)Pl(cos θ), where tl is unknown 
transmitted coefficient also determined by boundary conditions 
and k1 is transmitted wavenumber defined as 

√
2m1(E − V 1)/h̄. 

As our quantum scatterer has the azimuthal symmetry with re-
spect to the rotation around the propagation z-axis, the scattering 
and transmitted matter waves are also φ independent, as expected.

With the continuity of wave function at the boundary and 
the conservation of probability flux along the radial direction, 
i.e., ψenv(a, θ) = ψtr(a, θ) and (1/m0)(∂ψenv/∂r)|r=a =
(1/m1)(∂ψtr/∂r)|r=a , respectively, one can calculate the two un-
known complex coefficients: ascat

l and tl . Moreover, the scattering 
coefficient ascat

l can be written in a compact form,

ascat
l = − ζl

ζl + iηl
, (2)

where ζl and ηl are:

ζl = k1

m1
j′l(k1a) jl(k0a) − k0

m0
j′l(k0a) jl(k1a) (3)

and

ηl = k1

m1
j′l(k1a)yl(k0a) − k0

m0
y′

l(k0a) jl(k1a), (4)

with the spherical Neumann function denoted by yl(x). Further-
more, to quantify the scattering efficiency, an integration over a 
closed area can be performed by calculating the scattering prob-
ability flux �J scat at the far field zone (that is r → ∞) per unit 
incident matter current, |�J in| = h̄k0/m0. With this concept, we can 
define the scattering cross section accordingly [2]:

σ scat =
∮ �J scat · r̂da

|�J in| = 4π

k2
0

l=∞∑
l=0

(2l + 1)|ascat
l |2, (5)

and the transport cross section has the following form:

σ tr =
∮

(1 − cos θ)
dσ scat

d�
d� (6)

= 4π

k2
0

l=∞∑
l=0

(2l + 1)|ascat
l |2 (7)

− 8π

k2
0

l=∞∑
l=0

(l + 1)Re[(ascat
l )∗ascat

l+1 ],
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