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Second-harmonic generation as a frequency doubling process is ubiquitous in modern optical systems. 
The present study explores prospects of the stability region of second-harmonic generation in a medium 
coupled to a bosonic bath. We show that a stability–instability transition due to the combined action of 
driving field and nonlinearity coupling is seen. We report a reliable evidence confirming the appearance 
of the chaos in second-harmonic generation under suitable conditions. By tracing direct signatures of 
chaos in the quantum mechanics, adjacent-spectral-spacing-ratio (ASSR) distribution and participation 
ratio, we also find a critical point (εc, κc) = (2.8, 1.1) for which a pronounced delocalized regime is seen. 
To verify the existence of chaotic behavior we also turn our attention on long-range correlation statistics.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In many cases, the dynamical response of quantum systems is 
affected by the interaction with an environment, which may be a 
set of oscillators or a heat bath [1,2]. Thus, a correct investigation 
of such open quantum systems are based on tracing the effects of 
interaction with the reservoir, and so is rather complicated from 
mathematical point of view.

Although the traditional way to describe the dynamics of such 
systems is the master equation, it conveys some drawback. The 
main feature of master equation approach is neglecting mem-
ory effects. Of course, this assumption does not always hold, e.g., 
when non-damping or non-oscillating terms are exist. This con-
straint which may lead to instability of the system, reduces the 
applicability of the master equation approach [3]. In addition to 
master equation being a customary approach to solve Markovian 
processes, some other methods including a non-Markovian quan-
tum jump method [4,5], doubled or tripled Hilbert space methods 
[6,7], and a non-Markovian quantum state distribution method [8,
9] have also previously been used to simulate non-Markovian pro-
cesses. Generally, owing to setting different approximations the 
ability of these methods to apply in general quantum systems are 
under question [10]. However, an alternative approach is spectral 
analysis. Besides the ability of spectral analysis to simulate a di-
versity of dynamical systems [11–15], it can be applied to solve 
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quantum systems interacting with a reservoir without any approx-
imations [10,16].

Generally, the study of quantum optical systems inside a 
medium coupled a reservoir is of great interest in the fields of non-
linear optics [17–19]. One engaging effect to consider is second-
harmonic generation (SHG) [20–22]. The SHG occurs as a result 
of the atomic response, which causes the intensity of the second-
harmonic wave to increase as the square of the intensity of the 
applied laser light [23]. SHG also known as frequency doubling was 
first detected and studied in the seminal paper by Franken et al., 
[24]. Accordingly, the stability of nonlinear optical effects exposed 
to an incident field is the precursor of phase transition studies. 
On this matter, the first demonstration of instability and optical 
chaos in SHG was reported by Savage and Walls [25]. In contrast 
to most of the previously encountered studies [25–30], which have 
analyzed the classical signatures of chaos in SHG, surprisingly a re-
liable evidence confirming the appearance of quantum indicators 
of chaos in SHG is still lacking. The level repulsion as a princi-
pal hallmark of quantum chaos follows from symmetry reduction 
which mixes states, and gives rise to overlapping of states and so 
avoided crossings. Under these conditions, the zero energy sepa-
ration becomes unlikely, and the system may demonstrate level 
repulsion [31]. We expect the SHG effect be a promising candidate 
for the observation of level repulsion and so quantum chaos, ow-
ing to the inherently reduced symmetry of the crystal lattice, as a 
result of the incident electric fields [32–34].

In a previous effort [35], we have reported the existence of 
quantum chaos in the SHG, without considering the effect of 
bath. Here, we try to extend the observations to a general case 
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by considering the case of SHG inside a medium coupled to a 
bosonic bath. The investigation of such phenomena is possible in 
the framework of toy-model based on the n-photon states approx-
imations. Concerning this, we try to proceed our aim based on the 
two-photon states approach. Based on these considerations, we use 
spectral analysis to explore dynamical response and phase diagram 
of SHG. We find that the combined action of increasing nonlinear-
ity and driving field intensity induces an integrable-chaotic tran-
sition. We address the observed transition theoretically, without 
discussing the enhancement of SHG.

The remaining of the study is assembled as follows. In Sec-
tion 2 we review the starting model describing the interaction of 
light modes with frequencies ω and 2ω. Then, in sections 3, 4 we 
report our results for a defined dimension of the system. In sec-
tion 3 we address the onset of electric-field-induced delocalization, 
with emphasis on the quantum chaos results. Section 4 is aimed 
at investigating the effect of nonlinearity on the integrable-chaos 
transition of SHG. Finally, in Section 5 we conclude our observa-
tions.

2. Model

The Hamiltonian for the interaction of a light mode at fre-
quency ω with its second harmonic at frequency 2ω in the rotating 
wave approximation is written as [36,37]

H = Hint + H P + H B , (1)

where the interaction term of Hamiltonian in the h̄ = 1 basis is

Hint = i
κ

2
(a2b† − a†2

b), (2)

where κ , representing the effective χ(2) coupling strength between 
the two modes, stands for nonlinearity strength. a is the bosonic 
annihilation operator for excitations at frequency ω and b annihi-
lates excitations at frequency 2ω.

By considering the perturbation of the system from the outside 
by a coherent field with the frequency of the fundamental mode, 
the pumping term of Hamiltonian is described as

H P = i(εa† − ε∗a), (3)

where ε is the classical amplitude of the pump. The semiclassical 
approximation assumes that the electric field can be treated clas-
sically [38].

Due to the loss of light through the partially transmitting mir-
rors of the cavity, the system of interest is dissipative. Modeling of 
this loss is provided by coupling the cavity modes to reservoir as

H B = �
†
aa + �aa† + �

†
bb + �bb†. (4)

�a and �b are bath operators and represent cavity losses for the 
two modes.

For further consideration we represent the Hamiltonian in the 
Fock space matrix form. The Fock space representation of a state 
vector of the system is expressed as [39]

|�(n)(ε, κ) >=
N∑

α,β,ζ,η

C (n)
αβζη(ε,κ)|α > |β > |ζ > |η >, (5)

where the index (n) indicates the n-th member of the ensemble of 
state vectors. |α > and |β > are the Fock states of the fundamen-
tal and the second-harmonic modes, respectively. |ζ > and |η >

do the same for cavity modes. N defines the dimensionality of the 
system, in a way that dimension of the whole Fock space equals 
dim(H) = N4. The power 4 stands for the 4 Fock states, defining 
the basis of the space we work. The matrix elements of Hamilto-
nian is expressed as follows

Fig. 1. (Color online.) Schematic representation of non-zero elements of Hamiltonian 
for N = 3.
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H (int)
α′α,β ′β,ζ ′ζ,η′η = i κ

2

(√
α(α − 1)(β + 1) δα′,α−2 δβ ′,β+1 −√

(α + 1)(α + 2)β δα′,α+2 δβ ′,β−1
)

× δζ ′,ζ δη′,η ,

H (P )

α′α,β ′β,ζ ′ζ,η′η = i
(
ε
√

α + 1 δα′,α+1 − ε

√

α δα′,α−1
)

× δβ ′,β δζ ′,ζ δη′,η ,

H (B)

α′α,β ′β,ζ ′ζ,η′η = √
α(ζ + 1) δα′,α−1 δβ ′,β δζ ′,ζ+1 δη′,η +√
(α + 1)ζ δα′,α+1 δβ ′,β δζ ′,ζ−1 δη′,η +√
β(η + 1) δα′,α δβ ′,β−1 δζ ′,ζ δη′,η+1 +√
(β + 1)η δα′,α δβ ′,β+1 δζ ′,ζ δη′,η−1 .

(6)

The schematic picture of the non-zero elements of Hamiltonian 
(1) for N = 3 is shown in Fig. 1. Note that we report our obtained 
results for N = 7 in following sections 3 and 4.

At the considered electric field intensity and the nonlinearity of 
medium, χ(2) approximations is applicable [39,40]. Hence, one can 
explore the dynamical response of the system in the framework of 
two-photon states [39,40], and three-photon states [41]. Here, ac-
cording to the applied Hamiltonian we consider two-photon states 
approach.

3. Electric field effect

Contributions to the even order nonlinear optical effects, and 
consequently SHG, are usually expected to vanish in the case of 
nanomaterials having symmetric structure [23,42]. Non-vanishing 
contributions to such nonlinear optical effects are expected to ap-
pear when the symmetry is broken [43,44]. Applying electric fields 
is one of the commonly used approaches to remove the sym-
metry and the enhancement of nonlinear effects [32,33]. Besides 
removing the symmetry, the applied electric field leads to the non-
separability of Schrödinger’s equation. In this regime, instability 
and consequently quantum chaotic behavior is expected.

In order to determine the instability region of the studied sys-
tem subjected to a controllable electric field, we use the spec-
tral analysis approach. Owing to the loss of trajectory notion in 
quantum mechanics, instability in quantum mechanics cannot be 
further explored in a similar way with classical physics [45]. Ac-
cording to the Bohigas–Giannoni–Schmit conjecture [46], inspired 
by the work of Casati et al. [47], the statistical properties of the 
set of energy levels of a given system in the semiclassical limit 
[48,49] are well described by random matrix theory. In this re-
gard, different random matrices are mapped to different physical 



Download English Version:

https://daneshyari.com/en/article/5496483

Download Persian Version:

https://daneshyari.com/article/5496483

Daneshyari.com

https://daneshyari.com/en/article/5496483
https://daneshyari.com/article/5496483
https://daneshyari.com

