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A system’s perceived simplicity depends on whether it is represented classically or quantally. This is not 
so surprising, as classical and quantum physics are descriptive frameworks built on different assumptions 
that capture, emphasize, and express different properties and mechanisms. What is surprising is that, as 
we demonstrate, simplicity is ambiguous: the relative simplicity between two systems can change sign
when moving between classical and quantum descriptions. Here, we examine the minimum required 
memory for simulation. We see that the notions of absolute physical simplicity at best form a partial, 
not a total, order. This suggests that appeals to principles of physical simplicity, via Ockham’s Razor 
or to the “elegance” of competing theories, may be fundamentally subjective. Recent rapid progress in 
quantum computation and quantum simulation suggest that the ambiguity of simplicity will strongly 
impact statistical inference and, in particular, model selection.

© 2016 Elsevier B.V. All rights reserved.

We are to admit no more causes of natural things than such as 
are both true and sufficient to explain their appearances.

[Isaac Newton, 1687
Philosophiæ Naturalis Principia Mathematica,

Book III, p. 398 [1]]

1. Introduction

Beyond his theory of gravitation, development of the calculus, 
and pioneering work in optics, Newton engendered a critical ab-
stract transition that has resonated down through the centuries, 
guiding and even accelerating science’s growth: Physics began to 
perceive the world as one subject to concise mathematical Laws. 
Above, Newton suggests that these Laws are not only a correct per-
ception but they are also simple. Consequently, one should aban-
don the Ptolemaic epicycles for Newton’s elegant F = ma and 
F g ∝ m1m2/r2.

The desire for simplicity in a theory naturally leads us to con-
sider simplicity as a means for comparing alternative theories. Here, 
we compare the parsimony of two descriptions of stochastic pro-
cesses — one classical and one quantum. Classical versus quantum 
comparisons have, of late, captured our attention both for rea-
sons of principle and of experiment. Quantum supremacy holds that 
quantum systems behave in ways beyond those that can be ef-
ficiently simulated by classical computers [2]. A single cold 2D 
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Fermi gas supports coexistence of both quantum mechanical states 
at its core and classical states on its periphery [3,4]. The overriding 
impression is that now is an interesting time for the foundations 
of quantum mechanics. The following adds a new phenomenon to 
these debates on the balance of classical and quantum theories, as 
concerns the simplicity of their descriptions.

To start, we consider a Nature full of stationary stochastic pro-
cesses. A theory, then, is a mathematical object capable of yield-
ing a process’ probabilities. We can straightforwardly say that one 
process is more random than another via comparing their temper-
atures or thermodynamic entropies. But how to compare them in 
terms of their structural simplicities? We make use of a well devel-
oped measure of simplicity in stochastic processes — the statistical 
complexity — a measure of internal memory [5] or the minimum 
required memory to simulate a process. It provides a concrete and 
interpretable answer to the question, which process is structurally 
simpler? By applying this comparison, we may order all processes 
from the simplest to the most complicated [6].

With recent progress in quantum computation [7–9], an inter-
esting twist comes about if we add quantum mechanics to our 
modeling toolbox. Descriptions that act on a quantum substrate 
offer new and surprising options. For example, it was shown that 
a quantum mechanical description can lead to a simpler represen-
tation [10–14] and even in some cases infinitely simpler [15,16]. 
Recently, this quantum advantage was verified experimentally [17]. 
Proceeding with these methods, we discover what is most surpris-
ing: the relative simplicity of classical and quantum descriptions 
can change. Specifically, there are stochastic processes, A and B , 
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for which classical theory says A is simpler than B , but quan-
tum mechanics says B is simpler than A. What started out as a 
neat classical array is upended by a new quantum simplicity or-
der. This means quantizing a simple classical model may not be 
as simple as quantizing a more complicated classical model. As a 
consequence model selection is complicated by the addition of a 
quantum model class.

2. Classical and quantum simplicity

We consider stationary, ergodic processes: each a bi-infinite 
sequence of random variables X−∞:∞ = . . . X−2 X−1 X0 X1 X2 . . .

where each random variable Xt takes some value xt in a discrete 
alphabet set A and where all probabilities Pr(Xt , . . . , Xt+L) are 
time-invariant.

How is their degree of randomness quantified? Information the-
ory [18] measures the uncertainty in a single observation X0 via 
the Shannon entropy: H[X0] = − 

∑
x∈A Pr(x) log2 Pr(x) and the ir-

reducible uncertainty per observation via the entropy rate [19]: 
hμ = limL→∞ H[X0:L]/L. If we interpret the left half X−∞:0 =
. . . X−2 X−1 as the “past” and the right half X0:∞ = X0 X1 X2 . . .

as the “future”, we see that the entropy rate is the average 
uncertainty in the next observable given the entire past: hμ =
H[X0|X−∞:0]. Thus, as we take into account past correlations, the 
naive uncertainty H[X0] reduces to hμ .

How reducible is our uncertainty in the future X0:∞ knowing the past 
X−∞:0? The answer is given by the mutual information between 
the past and the future — the excess entropy [20]: E = I [X−∞:0 :
X0:∞]. With hμ and E, we measure randomness and predictability, 
respectively.

Let’s say we want to simulate a given process. To do this we 
write a computer code that follows an algorithm and allocate the 
memory the algorithm needs. For a given process computational 
mechanics [21] identifies the optimal algorithm — the process’ 
ε-machine. This is a unifilar hidden Markov model [22] that uses 
only the minimum required memory for simulation. We view a 
process’ ε-machine as the “theory” of a process in that it speci-
fies a mechanism that exactly simulates a process’ behaviors. In 
this way, computational mechanics supplements E and hμ with a 
measure of structure — the minimum required amount memory to 
simulate the given process.

The ε-machine consists of causal states σ ∈ S defined by an 
equivalence relation ∼ that groups histories, say x−∞:t and x−∞:t′ , 
that lead to the same future predictions Pr(Xt:∞|·): x−∞:t ∼
x−∞:t′ ⇐⇒ Pr(Xt:∞|x−∞:t) = Pr(Xt′ :∞|x−∞:t′ ). From this, one con-
cludes that a process’ ε-machine is, in a well defined sense, its 
simplest predictive theory.

Translating this notion of simplicity into a measurable quantity, 
we ask: What is the minimum memory necessary to implement opti-
mal prediction? The answer is the historical information stored in 
the ε-machine. Quantitatively, this is the Shannon entropy of the 
causal-state stationary distribution {πσ }, the statistical complexity:

Cμ = H[S] = −
∑
σ∈S

πσ log2 πσ , (1)

It is well known that the excess entropy is a lower-bound on 
this structural measure: E ≤ Cμ . In fact, this relation is only rarely 
an equality [23]. And so, while E quantifies the amount to which 
a process is subject to explanation by its ε-machine “theory”, this 
simplest theory is typically larger, informationally speaking (Cμ), 
than the predictability benefit it confers. That said, the ε-machine
is the best (simplest) theory. Thus, we use Cμ to define our no-
tion of classical simplicity. It provides an interpretable ordering of 
processes — process A is simpler than process B when C A

μ < C B
μ .

We may also consider the recently proposed quantum-machine 
representation of processes [10–12]. The quantum-machine con-

Fig. 1. The ε-machine for the nearest-neighbor Ising spin chain has two causal states 
σ1 and σ2. If the last observed spin x0 is up (s0 = +1) the current state is σ1 and 
if it’s down (s0 = −1) is σ2. If the current state is σ1, with probability p the next 
spin observed is up and, if the current state is σ2, with probability q the next spin 
observed is down.

sists of a set {|ηk(L)〉} of pure signal states that are in one-to-one 
correspondence with the classical causal states σk ∈ S . Each signal 
state |ηk(L)〉 encodes the set of length-L words that may follow σk , 
as well as each corresponding conditional probability. Fixing L, we 
construct quantum states:

|η j(L)〉 ≡
∑

w L∈AL

∑
σk∈S

√
Pr(w L,σk|σ j) |w L〉|σk〉 , (2)

where w L denotes a length-L word and Pr(w L, σk|σ j) = Pr(X0:L =
w L, SL = σk|S0 = σ j). The resulting Hilbert space is the product 
Hw ⊗Hσ . Factor space Hσ is of size |S|, the number of classical 
causal states, with basis elements |σk〉. Factor space Hw is of size 
|A|L , with basis elements |w L〉 = |x0〉 · · · |xL−1〉.

The quantum measure of memory is the von Neumann entropy 
of the stationary state:

Cq = −Tr(ρ logρ) , (3)

where ρ = ∑
i πi |ηi〉〈ηi |. This quantum analog of memory is gener-

ically less than the classical: Cq ≤ Cμ . Also, due to the Holevo 
bound [10,24], E ≤ Cq . Though rare in process space, the classi-
cal and quantum informational sizes are equal exactly when both 
models are “maximally simple”: E = Cq = Cμ .

3. Ising chain simplicity

The Ising spin-chain Hamiltonian is given by:

H = −
∑

<i, j>

( J si s j + bsi) , (4)

where si , the spin at site i, takes values 
{−1, +1

}
, J is the nearest-

neighbor spin coupling constant, and b is the strength of the ex-
ternal magnetic field.

In equilibrium the bi-infinite chain of spin random variables de-
fines a stationary stochastic process which has been analyzed using 
computational mechanics [25]. Importantly, spins obey a condi-
tional independence: Pr(X0:∞|x−∞:0) = Pr(X0:∞|x0). That is, the 
“future” spins (right half) depend not on the entire past (left half) 
but only on the most recent spin x0. The conclusion (see Supp. Ma-
terials) is that the two-state Markov chain process is minimally 
represented by the ε-machine in Fig. 1. Using Eq. (1), the statis-
tical complexity is directly calculated as a function of p and q. 
Fig. 2 shows that Cμ is a monotonically increasing function of tem-
perature T : 1 − Cμ ∝ T −2 at high T . In particular, for the three 
processes chosen at temperatures Tα < Tγ < Tδ , Cα

μ < Cγ
μ < Cδ

μ .
Consider now the quantum representation of these spin config-

urations. Each causal state is mapped to a pure quantum state that 
resides in a spin one-half space [13]:

|σ1〉 = √
p|↑〉 + √

1 − p|↓〉
|σ2〉 = √

1 − q|↑〉 + √
q|↓〉 . (5)

(We use a more compact spin up/down notation, rather than 
the quantum machine notation of Eq. (2).) Intuitively, the quan-
tum overlap accounts for the fact that the conditional predictions 
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