
Information and Software Technology 79 (2016) 17–35

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

A Linda-based platform for the parallel execution of out-place model

transformations

Loli Burgueño

a , ∗, Manuel Wimmer b , Antonio Vallecillo

a

a Universidad de Málaga, Atenea Research Group, Bulevar Louis Pasteur, 35. (29071) Málaga, Spain
b Vienna University of Technology, Business Informatics Group, Karlsplatz 13. (1040) Vienna, Austria

a r t i c l e i n f o

Article history:

Received 1 April 2015

Revised 7 May 2016

Accepted 6 June 2016

Available online 28 June 2016

Keywords:

Model transformation

Performance

Scalability

Parallelization

a b s t r a c t

Context: The performance and scalability of model transformations is gaining interest as industry is pro-

gressively adopting model-driven techniques and multicore computers are becoming commonplace. How-

ever, existing model transformation engines are mostly based on sequential and in-memory execution

strategies, and thus their capabilities to transform large models in parallel and distributed environments

are limited.

Objective: This paper presents a solution that provides concurrency and distribution to model transfor-

mations.

Method: Inspired by the concepts and principles of the Linda coordination language, and the use of data

parallelism to achieve parallelization, a novel Java-based execution platform is introduced. It offers a set

of core features for the parallel execution of out-place transformations that can be used as a target for

high-level transformation language compilers.

Results: Significant gains in performance and scalability of this platform are reported with regard to ex-

isting model transformation solutions. These results are demonstrated by running a model transformation

test suite, and by its comparison against several state-of-the-art model transformation engines.

Conclusion: Our Linda-based approach to the concurrent execution of model transformations can serve

as a platform for their scalable and efficient implementation in parallel and distributed environments.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Model Driven Engineering (MDE) is an approach to software de-

velopment where models and model transformations play a central

role in all software engineering processes [1] . Models capture the

aspects of interest of systems and behave as an abstraction of them

representing reality for a given purpose. Thus, models are simpler,

safer and/or cheaper than reality and allow users to deal with the

interesting parts of the systems in a simplified and more focused

way. In turn, model transformations are in charge of manipulat-

ing these models. They permit generating system implementations

from high-level models, conducting model analysis, software mi-

gration and modernization [2] or even data integration [3] .

To support such model transformation scenarios, a wide range

of different transformation languages already exists, each of them

comprising different characteristics [4] . However, the increasing

size and complexity of models are challenging the existing model

transformations languages and engines, whose performance and

∗ Corresponding author.

E-mail address: loli@lcc.uma.es (L. Burgueño).

scalability need to be significantly improved as the industry is

progressively adopting model-driven techniques [5] . In particular,

most MDE solutions and tools are having problems for coping with

models of only several millions of elements since most environ-

ments require the models to reside in memory. Their scalability is

not sufficient either, and performance rapidly degrades as the size

of the models grows beyond a few million elements. Furthermore,

current model transformation engines are mostly based on sequen-

tial and in-memory execution strategies and thus they have limited

capabilities to transform large models in acceptable time. This hin-

ders the benefits of using models and model transformations in

different application domains that use large models.

At the same time, parallel computing has become increasingly

important as chipmakers are putting more and more processor

cores on individual chips — which are mainly wasted if sequen-

tial engines are used. Similarly, distributed algorithms are gain-

ing attention as computer communication is getting much faster,

cheaper and more reliable, and the Cloud is taking over.

In this paper we present a framework, called LinTra, to achieve

the parallel and distributed execution of transformations, providing

significant performance and scalability improvements with regard

http://dx.doi.org/10.1016/j.infsof.2016.06.001

0950-5849/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.infsof.2016.06.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2016.06.001&domain=pdf
mailto:loli@lcc.uma.es
http://dx.doi.org/10.1016/j.infsof.2016.06.001

18 L. Burgueño et al. / Information and Software Technology 79 (2016) 17–35

to existing model transformation solutions. We make use of data

parallelism to achieve parallelization, and follow the Linda [6] co-

ordination model that offers concurrency and distribution mecha-

nisms using the well-known principles of separation of concerns

[7] , permitting concurrent access to distributed data in a transpar-

ent way. In LinTra, distribution is achieved using the blackboard

[8] distributed shared memory approach, which also provides an

abstraction over existing Java-based data space platforms. Scalabil-

ity is addressed by using data management middleware platforms

to implement the tuple space, which are able to deal with very

large volumes of distributed data in an efficient way. Finally, the

master-slave pattern [8] is used for achieving data parallelism.

Based on initial ideas outlined in our previous works [9,10,11] ,

the contribution of this paper is fourfold. First, we present a novel

Java-based execution platform called LinTra for the parallel exe-

cution of out-place transformations that may also be used as a

target for high-level transformation language compilers. Second,

we provide a mapping of model transformation concepts into the

LinTra framework. In particular, we define the representation of

models and metamodels and how those models are stored over a

set of machines using a blackboard approach. Third, we demon-

strate the performance and scalability of this platform by report-

ing the results of running a model transformation test set using

different Java middleware platforms for presenting models, and by

comparing it against several state-of-the-art model transformation

engines, including sequential and parallel ones. Finally, we dis-

cuss some implementation solutions for dealing with models that

do not fit in memory or which are distributed over several ma-

chines, using distributed, scalable NoSQL databases [12] as under-

lying technologies.

The structure of this paper is as follows. Section 2 introduces

the LinTra framework and how model transformations are embed-

ded in this framework, and then Section 3 focuses on LinTra’s fea-

tures for out-place transformations. LinTra is evaluated by a case

study in Section 4 , where we investigate the execution perfor-

mance of LinTra with respect to different Java-based middleware

platforms used to store and retrieve models, and we compare Lin-

Tra with other execution engines. Finally, in Section 5 we discuss

related work and conclude the paper in Section 6 with an outlook

on future work.

2. LinTra: preliminaries for marrying Linda with model

transformations

2.1. The Linda coordination model

Linda is a mature coordination model that uses a shared mem-

ory space as the only means of communication among parallel pro-

cesses. This model provides a set of coordination primitives that

can be added to existing programming languages for parallel and

distributed processing. It was first proposed by David Gelernter at

Yale University in the mid-1980s [13] and in recent years there has

been a resurgence in interest in it, particularly with regard to Java

implementations of Linda [14,15] .

In distributed memory systems, such as networks of worksta-

tions, the shared memory, which is called tuple space or black-

board , is usually distributed among the processing nodes. Indepen-

dent from the implementation strategy employed, the tuple space

is structured as a bag of tuples. An example of a tuple with four

fields is ("circumference", 3, 47, 53), where 3 is the radius, and 47

and 53 indicate the position (x and y coordinates) of the circum-

ference represented by this tuple. Another example is ("square", 5,

20, 30) which represents a square whose side length is 5, whose

position on the X-axis is 20 and 30 on the Y-axis.

Linda provides several operations as coordination primitives to

place tuples into a tuple space (write operation) and to retrieve

Listing 1. Example of Linda pseudocode.

tuples from it (read operations). Read operations can be either

blocking or non-blocking, and remove the read element or not. A

piece of Linda code with examples of these operations is shown in

Listing 1 .

The specification of the tuple to be retrieved (line 4) makes use

of an associative matching technique whereby a subset of the fields

in the tuple have their values specified. In our example, the read

operation defines a pattern that matches all the tuples whose po-

sition on the X-axis is 20. Therefore, the tuple written in the third

line is retrieved.

As a coordination language, the Linda primitives were conceived

to be integrated with a programming language, which is called the

host language. There are different Linda implementations for dif-

ferent host languages such as C-Linda [16] for C and JavaSpaces

[17] for Java.

2.2. LinTra

LinTra is a framework that allows the parallel execution of out-

place model transformations, no matter if the models are located

in a single machine or distributed over a set of nodes. We base

our transformation approach on Linda, implementing a shared tu-

ple space (or blackboard) and using data parallelism [6] .

Fig. 1 shows the architecture of LinTra. For running transforma-

tions on such an architecture, we explored how model transfor-

mations fit into the Linda framework and we made the distinc-

tion between two independent layers. The middleware layer con-

tains the concrete Linda implementation, while the LinTra layer on

top of it comprises the model transformation written in Java and

the models and metamodels representations. We also decided how

model transformation trace links are encoded to allow for efficient

retrieval, and how the transformation rule execution is distributed

over the available computational resources (machines, cores, etc.).

Note that, although we implemented our solution using Java, we

could have use other languages such as C, C ++ , C#, etc.

2.3. Linda and existing implementations

There is a wide variety of pure Linda implementations written

in different languages such as JavaSpaces [17] and TSpaces [18] in

Java, C-Linda [16] in C, Rinda [19] in Ruby and PyLinda [20] in

Python.

In addition, there are other mature software solutions for data

management based on in-memory data grids (IMDG) or on dis-

tributed caches that are not used as Linda implementations but

that provide similar functionality and even more. They are a spe-

cific kind of NoSQL databases called key-value caches. In particular,

they (i) scale-out because every node (computer) adds its CPU and

RAM to the cluster which can be used by all the nodes; (ii) can

store big data and enable fast access to it as it is manipulated in

main memory; (iii) permit dynamic scalability as nodes can dy-

namically join other nodes in a grid (cluster); (iv) enable elastic

main memory as every node adds its own RAM memory to the

cluster’s memory pool; (v) implement fault-tolerance mechanisms

without data loss, and (vi) implement a programming model to ac-

cess the cluster as if it was a single machine. Some of these data

management solutions are Hazelcast, Oracle Coherence, GigaSpaces

XAP, Ehcache and Infinispan, to mention a few. In Section 4 we

present a brief description for each particular solution we have

worked with.

Download English Version:

https://daneshyari.com/en/article/549651

Download Persian Version:

https://daneshyari.com/article/549651

Daneshyari.com

https://daneshyari.com/en/article/549651
https://daneshyari.com/article/549651
https://daneshyari.com

