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Fluctuation conductivity is experimentally studied in the genuine critical region near the superconducting 
transition of YBa2Cu3O7−δ , YBa2Cu2.985Fe0.015O7−δ and Y0.95Ca0.05Ba2Cu3O7−δ single crystal samples. 
Two fluctuation regimes where the electrical conductivity diverges as a power-law of the reduced 
temperature were systematically observed. In the first regime, farther from the critical temperature 
Tc , the transition behaves as predicted by the thermodynamics of the three dimensional-XY (3D-XY) 
universality class characteristic of a second-order phase transition. In the asymptotic regime closer to 
Tc a power-law regime characterized by a much smaller exponent is observed. The smallest value ever 
reported for the fluctuation conductivity exponent in the high-Tc superconductors is obtained for the 
Fe- and Ca-doped systems. We suggest that the regime beyond 3D-XY is a crossover towards a weakly 
first-order transition induced by internal magnetic excitations.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

One of the most distinctive properties of the high temperature 
cuprate superconductors (HTCS) is the rather short and anisotropic 
coherence length, ξ , of the Ginsburg–Landau (GL) superconduct-
ing order parameter (SOP) when compared with that observed in 
conventional superconductors. In the HTCS, the component ξc(0)

is, in general, much smaller than the c lattice parameter. There-
fore, the topology of the SOP becomes strongly dependent on the 
crystalline structure, chemical ordering and defect characteristics 
of these materials [1]. An important consequence of the small ξ
is the occurrence of large regions around the critical temperature 
Tc dominated by thermal fluctuations in the electrical conductivity 
[2–4].

Thermal fluctuations have also been observed near Tc of the 
HTCS systems in properties such as the specific heat, magnetic 
susceptibility, thermal expansion, Hall effect, and others [5]. Far 
above Tc , the thermal fluctuation phenomena have been inter-
preted in terms of a scenario described by the Gaussian approx-
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imation to the GL theory [2–4,6]. Closer to Tc , detailed mea-
surements of equilibrium [7,8] and transport [3,4,9] properties of 
the HTSC revealed the existence of a genuine critical fluctuation 
regime which is described by the three-dimensional-XY (3D-XY) 
universality class. Particularly, in the electrical conductivity this 
regime is identified by the critical exponent λCR ∼ 0.33 [4,9–11]. 
This value is expected to occur in the particular case where the 
dynamics is given by the model-E, in the classification of Ho-
henberg and Halperin [12]. However, electrical conductivity mea-
surements in YBa2Cu3O7−δ (YBCO) single crystals [9,11,13,14] and 
YBCO/Au composite thin films [15] reveal the existence of fluctu-
ation regimes beyond 3D-XY. These “supercritical” (S-CR) regimes 
are characterized by exponents smaller than λCR. The physical ori-
gin of the S-CR fluctuations is still unclear, but the low values 
observed for the characteristic exponent λS-CR suggest that the ulti-
mate character of the YBCO superconducting transition in the HTCS 
is of the weakly first-order (WFO) type. Some scenarios were pro-
posed with the aim of understanding the mechanism that could 
drive the superconducting transition of the HTCS into the WFO 
class [9,16,17].

In this work we study experimentally the effects of chemical 
impurities in the in-plane fluctuation conductivity of YBCO single 
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crystals. In addition to a reference pure sample, YBCO crystals were 
grown having 0.5% of the Cu atoms substituted by Fe, or 5% of the 
Y atoms replaced by Ca. Particular attention is given to the effects 
of these chemical substitutions on the critical and S-CR fluctua-
tion regimes. The obtained results furnish evidences in favor of 
the WFO scenario for describing the ultimate character of the su-
perconducting transition in the studied crystals.

Previous results on X-ray, Mössbauer spectroscopy and elec-
trical resistivity reported for YBa2(Cu1−xFex)3O7−δ with x < 0.02, 
show that the substitutional Fe atoms are located at the Cu(1) 
sites (chain sites) [18–20] and Tc remains practically unaltered 
[21]. Besides, the Fe substitution causes an increase of the oxygen 
content in the YBCO structure [22]. This fact justifies the obser-
vation of local magnetic ordering in YBa2(Cu1−xFex)3O7−δ poly-
crystalline samples [23]. Nuñez et al. [24] showed that in the low 
substitution limit, the uniformly distributed impurities stabilize in 
the low-spin Fe3+ state with an effective magnetic moment of 
2.18 μB. In Ref. [25] authors show that polycrystalline samples of 
YBa2(Cu1−xFex)3O7−δ with x > 0.01 undergo a magnetic transition 
at a characteristic temperature Tm (Tm < Tc) that increases with 
x without suppressing the superconducting state. The fact that a 
magnetic ordering is induced by replacing only 1% of the Cu atoms 
by Fe leads authors in Ref. [24] to suggest the existence of spin 
fluctuations with significant amplitude in the Cu sites of YBCO.

One of the relevant effects produced by the Ca substitution 
in YBCO superconducting properties is a marked reduction of the 
critical temperature [26–32]. Several hypotheses have been put for-
ward to explain the role of the Ca atoms in this effect [27–30,
33–35]. In particular, Hatada et al. suggest that the Tc(x) depres-
sion in Y1−xCaxBa2Cu3O7−δ is associated with the enhancement of 
the antiferromagnetic correlations between Cu-spins located in ad-
jacent Cu(2)–O superconducting planes [31]. These authors claim 
that, in a scenario of oxygen underdoping, in Y1−xCaxBa2Cu3O7−δ

samples, the c crystallographic lattice parameter of YBCO increases 
[31]. This augmentation, however, is accompanied by a reduction 
of the distance between adjacent Cu(2)–O superconducting planes, 
[31,33–35] which in turn strengths the antiferromagnetic correla-
tions between the in-plane Cu(2) spins along the c-axis crystallo-
graphic direction [31,33–35].

2. Experimental procedures

Several pure YBCO, YBa2Cu2.985Fe0.015O7−δ (YBCO-Fe) and
Y0.95Ca0.05Ba2Cu3O7−δ (YBCO-Ca) twinned single crystals were 
grown by the self-flux method [36,37]. Selected single crystals 
were submitted to an additional oxygenation process at T = 450 ◦C
for ten days in order to achieve the optimal oxygen content. The 
crystal dimensions are (2.20 × 0.80 × 0.040) mm3 for the YBCO 
sample, (1.50 × 0.36 × 0.035) mm3 for the YBCO-Ca sample and 
(0.90 × 0.69 × 0.010) mm3 for the YBCO-Fe sample.

The studied crystals were characterized by X-ray diffraction 
(XRD). The XRD data were collected with 0.02◦ steps at 1◦/min 
in the angular range 10◦ ≤ 2θ ≤ 100◦ . The spectra showed only 
the (00l) lines as expected for well oriented samples. The values 
found for the c-axis lattice parameter are: c = 11.66(±0.01) Å for 
YBCO; c = 11.68(±0.01) Å for YBCO-Ca, and c = 11.71(±0.01) Å
for YBCO-Fe. These values are in agreement with those reported in 
the literature [22,26,30,35,36].

The in-plane resistivity ρ(T , H) was measured as a function of 
the temperature, in the presence of magnetic field, with a low-
frequency ac-current technique which employs a lock-in amplifier 
as a null detector. A variable decade transformer was used in 
a compensating electric circuit [4]. Four inline electrical contacts 
were painted with silver paste on one of the sample’s surfaces ori-
ented parallel to the crystallographic ab plane. The applied current 
density intensity was kept in the range of J ≤ 1.5 A cm−2. Con-

Fig. 1. Resistivity vs T for the pure YBCO sample in zero applied magnetic field. The 
regular term ρR (T ) is obtained from extrapolating to low temperatures the linear 
high-temperature behavior. The inset shows the resistivity in the whole measured 
temperature interval.

stant magnetic fields (H ≤ 500 Oe) were applied parallel to J. This 
field–current configuration was adopted to significantly reduce the 
effect of Lorentz force on the fluctuation conductivity results. Tem-
peratures were measured within an accuracy of 2 mK using a Pt 
sensor. The ρ(T , H) data were recorded as the temperature was in-
creased or decreased in rates never exceeding 0.02 K/min. A large 
number of closely spaced experimental points were recorded in 
order to allow the numerical determination of the temperature 
derivative of the resistivity, dρ/dT , in the temperature range en-
compassing Tc .

3. Method of analysis

We analyze the contribution of thermal fluctuations to σ(T , H), 
{σ = ρ−1} by assuming that the fluctuation conductivity, �σ(T , H), 
diverges as a power law of the type

�σ(T , H) = Aε−λ, (1)

where ε = [T − Tc(H)]/Tc(H) is the field dependent reduced tem-
perature, λ is the critical exponent, and A is a constant amplitude. 
The excess conductivity, �σ , is estimated by subtracting the reg-
ular term σR(T , H) = 1/ρR(T , H) from the measured conductivity 
σ(T , H) = 1/ρ(T , H), that is,

�σ = σ − σR = 1/ρ − 1/ρR . (2)

As can be seen in the Fig. 1, the regular term (σR = ρ−1
R ) is 

obtained by extrapolating the high-temperature behavior [σR(T ) =
1/(a + bT ), where a and b are constants] to temperature below Tc .

In the analysis of the fluctuation conductivity results, we adopt 
a method analogous to that applied by S. Kouvel and M.E. Fischer 
[38] to study critical phenomena in magnetic transitions. According 
to this method, we numerically determine a quantity identified as 
the logarithmic derivative of conductivity, χσ (T , H) which is de-
fined as [4]

χσ = − d

dT
ln�σ. (3)

Then, from Eqs. (1) and (3), we obtain

χ−1
σ = 1

λ
(T − TC ). (4)

As previously shown [4,9], the identification of regimes de-
scribed by straight lines in plots of [χσ (T , H)]−1 versus temper-
ature allows the simultaneous determination of Tc and the critical 
exponent λ. The main sources of uncertainty in our data analysis 
come from the criteria adopted to estimate σR(T ) and from the 
numerical calculation of temperature derivatives, once
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