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In a paper by Popescu and Rohrlich [1] a proof has been presented showing that any pure entangled 
multiparticle quantum state violates some Bell inequality. We point out a gap in this proof, but we also 
give a construction to close this gap. It turns out that with some extra effort all the results from the 
aforementioned publication can be proven. Our construction shows how two-particle entanglement can 
be generated via performing local projections on a multiparticle state.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The question which quantum states violate a Bell inequality and 
which not is of central importance for quantum information pro-
cessing. In Ref. [1] it has been shown that any pure multiparticle 
quantum state violates a Bell inequality. The strategy for proving 
this statement was the following: First, one can show that for any 
entangled pure state on N particles one can find projective mea-
surements on N − 2 particles, such that for appropriate results of 
the measurements the remaining two particles are in an entan-
gled pure state. Then, one can apply the known fact that any pure 
bipartite entangled state violates some Bell inequality [2].

In this note we point out a gap in the proof presented in 
Ref. [1]. The gap concerns the part where the projective measure-
ments on N − 2 particles are made. It turns out that a certain 
logical step does not follow from the previous statements and we 
give an explicit counterexample for a conclusion drawn at the crit-
ical point. Luckily it turns out, however, that with a significantly 
refined and extended argumentation the main statement can still 
be proven. Independently of the connection to Ref. [1] our results 
provide a constructive way how a two-particle entangled state can 
be generated from an N-particle state by performing local projec-
tions onto N − 2 particles. This may be of interest for the theory 
of multiparticle entanglement.

This note is organized as follows. In Section 2 we discuss the 
proof from Ref. [1] and the problem with a Lemma used there. In 
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Section 3 we present a detailed proof of the required statement for 
qubits. Finally, in Section 4 we discuss the higher-dimensional case 
as well as some other observations needed for the proof.

2. Discussion of the original argument

The gap concerns the proof of the Lemma on page 296 of 
Ref. [1]. This lemma states that:

Let |ψ〉 be an N system entangled state. For any two of the N sys-
tems, there exists a projection onto a direct product of state of the other 
N − 2 systems, that leaves the two systems in an entangled state. In the 
following we show that while the Lemma is correct, there is a gap 
in its original proof. Doing so, in this section we will reformulate 
the proof in modern language in order to see where the problem 
is. For simplicity, we first consider only qubits.

The proof from Ref. [1] is a proof by contradiction, so it starts 
with assuming the opposite. So, orthogonal basis vectors |bi〉 ∈
{|0〉, |1〉} are considered for each qubit i, where the conclusion 
does not hold. That is,

〈b3|〈b4| . . . 〈bN |ψ〉 = |α〉|β〉, (1)

where the projections are carried out on the qubits 3, . . . , N and 
the qubits one and two remain in the product state |α〉|β〉 for any 
possible choice of the 〈b3|〈b4| . . . 〈bN |. The 〈bi | can take the values 
0 or 1. So, the product vector will in general depend on this choice 
and it is appropriate to write this dependency as

|α〉 = |α(b3, . . . ,bN)〉 and |β〉 = |β(b3, . . . ,bN)〉. (2)

What happens if the value of b3 changes? The proof in Ref. [1]
argues convincingly that then not both of the |α〉 and |β〉 can 
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change: If this were the case, a projection onto the superposi-
tion 〈c3| = 〈b3 = 0| + 〈b3 = 1|, while keeping 〈b4| . . . 〈bN | constant 
projects the system on the first two qubits in an entangled state. 
So, we have either

|α〉 = |α(◦,b4, . . . ,bN)〉 or |β〉 = |β(◦,b4, . . . ,bN)〉, (3)

where the “◦” indicates that |α〉 or |β〉 for the given values of 
b4, . . . , bN does not depend on b3.

The original proof continues the argument as follows: Repeating 
the argument for other subspaces, we conclude that ... each index [bi] 
actually appears in either |α〉 or in |β〉 but not in both. This conclusion 
is unwarranted. The point is that for a given set of b4, . . . , bN one 
of the vectors (say, |α〉 for definiteness) does not depend on b3, 
but for another choice of b4, . . . , bN the other vector |β〉 may be 
independent on b3, while |α〉 may depend on it. So, one cannot 
conclude that one of the vectors is generally independent.

The problem is best illustrated with a counterexample. Consider 
the four-qubit state

|ψ〉 = 1

2
(|0000〉 + |0101〉 + |0110〉 + |1111〉). (4)

One can easily check that this is not a product state for any bi-
partition, so the state is genuine multiparticle entangled. Also, any 
projection into the computational basis on the particles three and 
four leaves the first two particles in a product state. We have for 
the dependencies:

|α(00)〉 = |0〉, |α(01)〉 = |0〉, |α(10)〉 = |0〉, |α(11)〉 = |1〉,
(5)

and

|β(00)〉 = |0〉, |β(01)〉 = |1〉, |β(10)〉 = |1〉, |β(11)〉 = |1〉,
(6)

so neither of these vectors does depend on a single index only.
Of course, if one chooses measurements in other directions on 

the qubits three and four, that is, one measures vectors like

|c3〉 = cos(γ )|0〉+ sin(γ )|1〉 and |c4〉 = cos(δ)|0〉+ sin(δ)|1〉, (7)

then the remaining state on the qubits one and two is entangled. 
So the state |ψ〉 is not a counterexample to the main statement 
of the Lemma, but it demonstrates that proof requires some extra 
work.

Finally, if one accepts the step that each index [bi ] occurs only 
in |α〉 or |β〉, but not in both, one can conclude as demonstrated 
in Ref. [1] that the original state has to factorize, so it is not en-
tangled.

3. Completing the argument

The previous section demonstrated that the proof of the Lemma 
in Ref. [1] is missing some discussions in order to be complete. In 
this section we provide a way to add the missing part. We prove 
the following statement:

Let b′ = (b3, b4, . . . , bN) with bi ∈ {0, 1} be the basis vectors which 
are used for the projection on the qubits 3, . . . , N and denote the remain-
ing product state on the first two qubits by |α(b′)〉|β(b′)〉. Then, |α(·)〉
depends only on some subset of the indices b′, while |β(·)〉 depends on 
the complement subset. This statement implies the correctness of 
the Lemma in Ref. [1].

The proof is done by assuming the opposite and reaching a 
contradiction. The opposite claim is that there exists an index i
(without the loss of generality, we can take i = 3) and two sets of 
values for the remaining indices

b = b4,b5, . . . ,bN and B = B4, B5, . . . , B N , (8)

such that

|α(0,b)〉 �= |α(1,b)〉 and |β(0,B)〉 �= |β(1,B)〉, (9)

meaning that both depend on b3. Here, |α(0, b)〉 is a short-hand 
notation for |α(b3 = 0, b)〉. Also, the inequality symbol here and 
in the following indicates linear independence, i.e., |α(0, b)〉 �=
λ|α(1, b)〉 for any λ �= 0.

The vectors b and B differ in some entries, but in some entries 
they match. Without loss of generality, we can assume that they 
differ in the first k entries while the others are the same and equal 
to zero. More specifically, they can be taken of the form:

b = 0 0 0 . . . 0 0 0 . . . 0,

B = 1 1 1 . . . 1︸ ︷︷ ︸
k

0 0 . . . 0︸ ︷︷ ︸
N−k−3

. (10)

Then the proof proceeds via induction on k. The precise statement 
we want to prove for all k is the following: Let the vectors b and 
B differ by at most at k terms. Then, if |α(0b)〉 �= |α(1b)〉, the 
equality |β(0B)〉 = |β(1B)〉 must hold. The crucial point here is that 
on each induction step we need to use the already derived linear 
dependencies and independencies from all the previous induction 
steps, i.e. for all k′ < k. We give the first (k = 0 	→ k = 1) and the 
second (k = 1 	→ k = 2) step of the induction explicitly, as this is 
needed in order to get the idea for the general case. This general 
case is discussed afterwards.

(a) The base case: If k = 0, then b = B and the proof for this par-
ticular case is included in the discussion in Section 2 and in 
Ref. [1].

(b) k = 0 	→ k = 1:
As |α(·)〉 and |β(·)〉 depend on b3 and b4 only, we can sup-
press the other indices and we write |α(00)〉, |α(01)〉, etc. Us-
ing this notation the problem boils down to showing that

|α(00)〉 �= |α(10)〉 and |β(01)〉 �= |β(11)〉 (11)

cannot happen simultaneously. We show that if this would be 
true, it would contradict the assumption that the state after 
projection is a product state.
From step (a) we already know that the statement is correct 
for k = 0, which means that if only one value changes, then 
only one of |α(·)〉 and |β(·)〉 can change. We can use this 
in the following way: For x = 0 or 1, if |α(0x)〉 �= |α(1x)〉, it 
follows that |β(0x)〉 = |β(1x)〉. Furthermore, |α(x0)〉 �= |α(x1)〉
implies that |β(x0)〉 = |β(x1)〉. And similarly, we can conclude 
equalities for the |α(·)〉 from inequalities of the |β(·)〉.
Assuming that the statement in Eq. (11) can be satisfied, we 
would like to reach a contradiction. From the conditions in 
Eq. (11) and our previous argumentation it follows that

|α(01)〉 = |α(11)〉 and |β(00)〉 = |β(10)〉. (12)

Now there are two cases to be considered and in both cases a 
contradiction is reached:

1. The case |α(00)〉 �= |α(01)〉:
Then from the result for k = 0 an equality follows for 
the |β(·)〉, namely |β(00)〉 = |β(01)〉. This implies with 
Eqs. (12) and (11) that |β(10)〉 �= |β(11)〉. Consequently, 
we get that |α(10)〉 = |α(11)〉 and from Eq. (12) it follows 
that |α(10)〉 = |α(01)〉.
To sum up all the relations for |α(·)〉 and |β(·)〉, we can 
write:

|α̃〉 ≡ |α(01)〉 = |α(10)〉 = |α(11)〉 �= |α(00)〉,
|β̃〉 ≡ |β(00)〉 = |β(01)〉 = |β(10)〉 �= |β(11)〉. (13)
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