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We investigate synchronization thresholds in arrays of identical classic stick-slip dry friction oscillators 
connected in a nearest neighbor fashion in closed and open ring network. Friction force is modeled by 
smoothened Stribeck model. Arrays of different length are checked in two parameter space (i.e., coupling 
coefficient vs. excitation frequency) for complete synchronization as well as cluster synchronization. 
Synchronization thresholds obtained by brute force numerical integration are compared with possible 
synchronization regions using the concept called master stability function in the form of two-oscillator 
reference probe. The results show existence of both complete synchronization and cluster synchronization 
regions in the investigated systems and confirm that two-oscillator probe can be applied for prediction 
of synchronization thresholds in systems with stick-slip phenomenon.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Synchronous behavior of many dynamical systems has been 
observed for a long time. One of the first scientific record on syn-
chronization was reported by Christiaan Huygens in the 17th cen-
tury [1], when he observed mutual synchronization in two pendula 
hanging from a beam. He correctly concluded that small move-
ments of the beam are responsible for the energy transfer between 
oscillating pendula, yielding to mutual synchronization. Nowadays, 
examples of synchronization can be encountered in various fields 
of science, such as mathematics, physics, engineering, biology, soci-
ology [2–8]. Pikovsky et al. in their classic book on synchronization 
[9] define it as adjustments of rhythms of oscillating objects due 
to weak interaction. Recently, researchers have shown an increased 
interest in synchronization in nonlinear systems [10–14]. Different 
concepts and ideas in the area of synchronization have emerged 
(e.g. [15,16]).

The main goal of the investigation of synchronizability of a dy-
namical system is to find the synchronization thresholds, i.e., the 
strength of the coupling for which the synchronization occurs. In 
case of complete synchronization (CS), defined by Pecora and Car-
roll [17] as a situation when two trajectories converge in phase 
space, for identical oscillators (i.e., defined by the same ODE and 
parameters) one can use technique of master stability function 
(MSF) [18] or its simplified version for diagonal coupling [19] to 
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establish the synchronization thresholds. To obtain the MSF us-
ing classic method one needs eigenvalues of connectivity matrix 
and Lyapunov exponents. For mechanical systems with disconti-
nuities (e.g. friction oscillators), when it is difficult to calculate 
Lyapunov exponents, one can use two-oscillator probe, to evalu-
ate synchronization thresholds [20]. This probe can be treated as 
a direct equivalent of the MSF when the so called real coupling 
between the oscillators is applied [21]. In practice, for mechanical 
systems only such a kind of coupling is possible.

In addition to the CS, one can also distinguish imperfect com-
plete synchronization (ICS), when the oscillators almost synchro-
nize (i.e., distance between oscillators in phase space converges to 
some small value). If a network consists of N > 2 identical oscilla-
tors one may distinguish at least two subsets, in which members 
are in sync with each other and out of sync with the members of 
other subsets. Such a subset is called cluster [22]. The topic of clus-
ter synchronization has been addressed in many papers including 
[23–26]. Chaotic synchronization in networks of nearest neighbor 
topologies is investigated in [27], where the authors study 3-D cel-
lular neural networks. An occurrence of synchronization windows 
in the parameter space is described in [28,29], where it is named 
as ragged synchronizability.

Friction force, as one of the ubiquitous forces in mechanics, 
is a result of the resistance of contacting surface to motion. In 
order to describe nature of friction, many models have been de-
veloped, considering various properties of friction phenomenon. 
These include classic Coulomb model [30], Stribeck effect [31], 
Lu-Gre model [32] and many others [33–39]. The choice of the 
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appropriate model depends on dynamics between the interfaces. 
Application of nonlinear models is advised for systems with com-
plex dynamics, while basic Coulomb model should be enough for 
statical problems. The occurrence of self-induced vibration (i.e., 
stick-slip) is characteristic for friction oscillators. The two contact-
ing surfaces stick to each other and then slip in alternate manner. 
Stick-slip is the cause of the squeaking sound, one can hear from 
various mechanisms and the physical principle of the music pro-
duced by violins [40].

The classical stick-slip system consists of a drive (e.g. conveyor 
belt), elastic element (spring) and the mass which is pushed hor-
izontally on the surface. Stick-slip friction oscillator is an example 
of a system with discontinuity, which means that the right hand 
sides of the differential equations are piecewise differentiable. The 
discontinuity originates from the change of the direction of fric-
tion force near zero relative tangential velocity between contact-
ing surfaces, which is realized by means of signum function. This, 
however, requires special handling by the numerical routines. One 
of the solutions to that problem, encountered in the literature 
[41–43], is to smooth the model by using various sigmoid ap-
proximation of signum function (more details in Subsection 2.3). 
Understanding the stick-slip phenomenon is important in engineer-
ing, as it is crucial to model the behavior of mechanical elements 
[44–46].

Stick-slip phenomenon has been reported to accompany earth-
quakes [47]. Networks of coupled stick-slip oscillators, similar to 
the one used in this paper, have been adopted in seismology as 
a simplified model of earthquakes, known as Burridge–Knopoff 
model [48]. In this concept the blocks connected by springs on 
a rough surface mimic the behavior of continental plates. Different 
variants of Burridge–Knopoff model have been studied in [49–54]. 
Coupled friction oscillators are also discussed in [55–57], whereas 
[58] is focused on synchronization properties of such systems. Au-
thors of [59] report an analogy between array of coupled friction 
oscillators and the dynamics of stock indexes.

In this paper we continue research, which was started in [21], 
where we checked arrays of self-induced friction oscillators only 
for the occurrence of complete synchronization. Our goal is to in-
vestigate the synchronization thresholds for open and closed rings 
of stick-slip friction oscillators in two-parameter space, for differ-
ent length of arrays. We use the above mentioned two-oscillator 
probe to verify the findings of numerical calculations for the com-
plete synchronization. Additionally, we aim to check the cluster 
synchronizability of the systems in question. The article is or-
ganized as follows. The methodology, including basic definitions, 
tools and mathematical model, is presented in Section 2. The re-
sults of numerical study are presented in Section 3. Finally, conclu-
sions are drawn in Section 4.

2. Methodology

In this Section we introduce the reader to the definitions of 
synchronization used in the paper (Subsection 2.1) as well as the 
concept of master stability function and two-oscillator probe (Sub-
section 2.2), along with mathematical model of the system in ques-
tion (Subsection 2.3).

2.1. Synchronization types

Complete synchronization is defined by Pecora and Caroll [17], 
as a situation when two trajectories converge in phase space, 
which giving two trajectories x(t) and y(t) can be defined as fol-
lows:

Definition 1. Complete synchronization of two dynamical system 
represented with their phase plane trajectories x(t), y(t), recep-
tively, takes place when the following relation is fulfilled [60]:

lim
t→∞‖x (t) − y (t)‖ = 0. (1)

Eq. (1) means that both oscillators behave exactly in the same 
manner (coincidence of phases and frequencies). Complete syn-
chronization is possible only for identical oscillators (i.e., same 
ODEs and parameters). However, in reality due to parameters 
mismatch the oscillators may be almost in synchronization, with 
phase space separation between respective trajectories bellow 
small parameter ε.

Definition 2. The imperfect complete synchronization (ICS) of two 
dynamical systems represented with their phase plane trajectories 
x(t) and y(t) respectively, occurs when the following inequality is 
fulfilled [60]:

lim
t→∞‖x (t) − y (t)‖ ≤ ε, (2)

provided ε is a small parameter.

Supposing the system consists of N > 2 identical oscillators one 
may distinguish one or more subsets for which the particular os-
cillators are in sync with each other and out of sync with the 
members of the other subsets. The subset of synchronized oscil-
lators are called clusters. The motion of different clusters may be 
uncorrelated or one can observe a shift phase between them.

2.2. Master stability function and two-oscillator probe

As mentioned in the Introduction, MSF is used to determine 
synchronization thresholds for identical oscillators coupled in dif-
ferent configurations. In MSF the synchronizability of the network 
of identical coupled oscillators can be described by the eigenvalue 
spectrum of the connectivity matrix.

Let us couple N identical oscillators, which can be written in a 
block form as:

ẋ = F(x) + (σG ⊗ H)x, (3)

where x = (x1, ..., xN) ∈ R
m , F(x) = (f(x1), ..., f(xN)), σ – coupling 

coefficient defining the strength of the coupling, G is the connec-
tivity matrix, which is Laplacian matrix describing the topology of 
connections between the nodes of the network, ⊗ is a Kronecker 
product of two matrices and finally H : Rm → R

m output func-
tion of each oscillator’s variables used in the coupling (identical 
for each node).

Derivation of variational equation of the network described in 
Eq. (3) yields to

ξ̇ = [I ⊗ DF + σ (G ⊗ DH)] ξ, (4)

where ξ = (ξ1, ..., ξN ) – collection of perturbations, I – identity 
matrix, DF, DH – respective Jacobians of system and output func-
tions. The block diagonalization of Eq. (4) results in

ξ̇k = [Df + σγk DH] ξk, (5)

where ξk denotes different transverse modes of a perturbation 
from the synchronous state, γk stands for k-th eigenvalue of the 
connectivity matrix G, k = 0, 1, ..., N − 1. For k = 0 the eigenvalue 
is γ0 = 0, thus reducing the Eq. (5) to variational equation of the 
separated node of the system

ξ̇k = Dfξk, (6)

which corresponds to the longitudinal direction located within the 
synchronization manifold. The other k-th eigenvalues correspond 
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