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Equation of motion for estimation fidelity of monitored oscillating 

qubits ✩
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We study the convergence properties of state estimates of an oscillating qubit being monitored by a 
sequence of discrete, unsharp measurements. Our method derives a differential equation determining the 
evolution of the estimation fidelity from a single incremental step. In case the oscillation frequency � is 
precisely known, the estimation fidelity converges exponentially fast to unity. For imprecise knowledge 
of � we derive the asymptotic estimation fidelity.

© 2017 Published by Elsevier B.V.

1. Introduction

High fidelity quantum state estimation is a key requirement in innumerable quantum control applications of quantum information pro-
cessing, quantum simulation, quantum metrology, and quantum communication. Quantum state estimation [1–4] based on continuous or 
sequential unsharp (sometimes called weak) measurement [5–10] has opened new avenues for quantum control that obviate the need for 
repeated state preparation to execute tomography and allow, for example, real-time quantum closed-loop feedback. These principles have 
been brought to bear in different experimental platforms including microwave cavities [11] and superconducting qubits [12]. Improved 
sophistication in the unsharp measurement control toolbox [13] promises significant expansion beyond traditional open loop quantum 
control applications.

To achieve high fidelity control based on unsharp measurement the experimenter is forced to balance the benefit of allowing coherent 
dynamics to proceed subject to only weak perturbations, with the price of reduced information gain per measurement. As such, finding 
optimal estimation and control strategies are of prime importance. To make headway, detailed analytical descriptions of the measurement 
and estimation process are desirable.

In this paper we study the dynamics of state estimation fidelity during a sequence of discrete, unsharp measurements. Detailed an-
alytical results are natural in the domain of continuous unsharp measurement, but we attempt here to place on a firmer footing the 
understanding of estimation dynamics during sequential, discrete measurements, as is natural in many experimental settings like trapped 
ions or microwave cavities.

We consider an estimation protocol wherein a state estimate is propagated by a Hamiltonian presumed to drive a laboratory quantum 
system which is also subject to sequential unsharp measurement. The state estimate is sequentially updated based on the outcome of 
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each measurement on the actual quantum state with the same propagator as the system. Numerical simulations have demonstrated the 
convergence of the state estimate when all parameters in the Hamiltonian are precisely known [14,4] and even for the case of process 
tomography, treating the Hamiltonian parameters as state variables of a hybrid system [15–17].

Here we study the convergence of the state estimate for sequential unsharp measurements analytically, for the case of a two-level 
system undergoing Rabi oscillations. We start our study in Section 2 with a brief explanation of the state estimation protocol. In Section 3
we investigate the dynamics of the estimation fidelity, when the Hamiltonian is precisely known, or known within a specified error 
margin. This allows us to place bounds on the parameter space that grants high-fidelity state estimation.

2. State estimation and fidelity

A commonly used distance measure for the “closeness” of two quantum states is the estimation fidelity. It is defined as F (ρ, ρe ) =
Tr

[√
ρ

1
2 ρeρ

1
2

]2

, and is sometimes referred to as the squared fidelity. Here ρ and ρe are the density matrices describing the actual 

quantum state and the estimate of that quantum state, respectively. When both states are pure, i.e. ρ = |ψ〉〈ψ | and ρe = |ψe〉〈ψe|, the 
fidelity takes the simple form F (ψ, ψe) = |〈ψ |ψe〉|2 [18]. The greater the fidelity, the more similar the two states are. It is 0 if, and only 
if, |ψ〉 and |ψe〉 are orthogonal pure states and it is 1 if, and only if, |ψ〉 = |ψe〉.

Here we assume that |ψ〉 and |ψe〉 represent an actual and an estimated state, respectively. These states do not in general initially 
coincide, and our task is to exploit unsharp measurement with the aim of forcing |ψe〉 to converge onto |ψ〉 in the presence of ongoing 
dynamics. A single elementary step of the estimation protocol consists of a unitary time evolution of both states followed by an unsharp 
measurement (which is a probabilistic “filtering” operation) on the actual state. The estimated state is updated based on the result of 
the measurement on the actual system. Under appropriate circumstances successive repetitions of this elementary step lead to a faithful 
estimate of the actual state in real time.

More concretely, an elementary step of the method can be formulated mathematically as follows. First, the actual state evolves accord-
ing to the Hamiltonian dynamics of the system specified by the evolution operator Û (�):

|ψ〉 ⇒ Û (�)|ψ〉 ≡ |ψ ′〉. (1)

If the Hamiltonian is precisely known then the estimate is propagated using the same evolution operator. However, a (classical) param-
eter � specified in the Hamiltonian, such as the Rabi frequency in the case of Rabi oscillations, may be detuned away from the actual 
parameter. The estimated state is thus evolved using an estimated unitary operator U (�e):

|ψe〉 ⇒ Û (�e)|ψe〉 ≡ |ψe′ 〉. (2)

The task of estimating �e has been the subject of earlier work [17]. The actual state then undergoes the following random change 
(collapse) under selective measurement,

|ψ ′〉 ⇒ 1√
pn

M̂n|ψ ′〉 ≡ |ψ ′
n〉 (3)

where M̂n is the Kraus operator corresponding to the nth allowed measurement outcome, and pn = 〈ψ |M̂†
n M̂n|ψ〉 is the associated 

probability for the outcome. The Kraus operators are constrained via 
∑

n M̂†
n M̂n = ∑

n Ên = I, where we introduced the positive effects 
Ên = M̂†

n M̂n . The estimate |ψe〉 is updated using the outcome of the selective measurement just done on |ψ ′〉:

|ψe〉 ⇒ 1√
pe

n

M̂n|ψe′ 〉 ≡ |ψe′
n 〉 (4)

with pe
n = 〈ψe′ |Ên|ψe′ 〉. The divisor pe

n is merely used to re-normalize the updated |ψe′ 〉; the statistics of the updates are determined by 
the probabilities pn to observe outcome n.

We can now define the average change in fidelity after a single elementary step of the estimation protocol:

�F =
∑

n

pn|〈ψ ′
n|ψe′

n 〉|2 − |〈ψ |ψe〉|2. (5)

Using Eq. (3) and (4) we obtain

�F =
∑

n

|〈ψ |Û †(δ)Ê ′
n|ψe〉|2

〈ψe|Ê ′
n|ψe〉 − |〈ψ |ψe〉|2, (6)

where δ = � − �e and Ê ′
n = Û †(�e)ÊnÛ (�e) are the time-varying effects.

As is clear from Ref. [2], in the case where the Hamiltonian is precisely known (δ = 0) the above update follows the spirit of the 
classical Bayesian update and we expect intuitively that the measured actual |ψ〉 and the updated estimate |ψe〉 come “closer” to each 
other. The method performs suitably well in various quantum estimation situations [14,4,11,19]. In what follows, we will use Eq. (6) to 
derive time dependence of the estimation fidelity convergence of oscillating qubits when the Hamiltonian is precisely know (δ = 0) and 
find the asymptotic estimation fidelity when the Hamiltonian is not precisely known (δ 	= 0).
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