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The effect of quantum collapse and revival is a fascinating interference phenomenon. In this paper the 
phenomenon is studied analytically and numerically for a simple system, a slightly anharmonic oscillator. 
The initial wave-function corresponds to a displaced ground state of a harmonic oscillator. Possible 
experimental realizations for cold atoms are discussed in detail.

© 2017 Published by Elsevier B.V.

1. Introduction

Collapse and revival phenomena are fascinating and are en-
countered in a variety of physical situations, that were explored 
experimentally and theoretically. In the present paper a simple 
example that can be analyzed analytically, and may be realized 
experimentally, is presented.

The first collapse and revival phenomenon that was observed 
and explained theoretically is the Talbot effect [1,2], where the 
amplitude of an optical signal collapses and then revives partially 
and completely. A quantum phenomenon of this type is the quan-
tum carpet [3–5]. Some revivals discussed here are of different 
nature than the ones found for the Talbot effect and the quantum 
carpet. Collapses and revivals, as well as fractional revivals and su-
perrevival structures were observed for wave packets in Rydberg 
atoms [6–13]. Also, this phenomenon was observed for interacting 
bosons [14,15], and model systems [16–20]. Similar phenomenon 
was found for chaotic systems [21]. For the two site Bose Hub-
bard model, the difference in populations of the two sites exhibits 
collapses and revivals [22].

A simple model where the phenomenon of collapses and re-
vivals is found is for noninteracting bosons in a weakly anharmonic 
trap [23]. In this specific situation the particles are prepared in 
the ground state of the trap and then the potential is instanta-
neously shifted by some distance. In a harmonic trap, the wave 
packet oscillates with the frequency of the trap and so do the vari-
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ous observables, for example, the position x and the momentum p. 
As a result of the anharmonicity, these oscillations are superim-
posed by an envelope exhibiting collapses and revivals. Some of 
our numerical results were presented in [23] that focused on a 
different issue, namely echoes resulting of the interplay between 
two displacements. In the present work, analytic formulas for the 
evolution of the observables are derived.

One should remember that within the model we explore the 
evolution is coherent and information is not lost even during the 
collapse. This coherence enables the revivals.

The model presented here is simple and the evolution of the 
observables is described in a straightforward manner. The simplic-
ity is of great value if used to explore more complex situations. 
For example, effects of interparticle interactions will result in devi-
ations from our predictions. These can be detected in experiments. 
The significance of these effects can be tuned by the particle den-
sity.

The analytical method we use in the present paper is the semi-
classical approximation assuming large quantum numbers.

When we expand a symmetric potential around its minimum, 
the leading order is harmonic and the first correction is a term 
of the form βx4. Therefore, we study a model described by the 
Hamiltonian

H ′ = p′2

2m′ + 1

2
m′ω′2

0 x′2 + β ′

4
x′4, (1)

In dimensionless units

x = x′/
√

h̄/m′ω′
0 (2)
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t = ω′
0t′ (3)

H = H ′

h̄ω′
0

(4)

p = p′
√

1

h̄m′ω′
0
, (5)

where prime denotes the corresponding values in physical units, 
and the Hamiltonian takes the form

H = p2

2
+ 1

2
x2 + 1

4
βx4, (6)

where

β = β ′
(

h̄

m′2ω′3
0

)
. (7)

In the present work we assume β � 1. The Schrödinger equation 
is

i
∂

∂t
ψ = Hψ. (8)

The model (6) is an idealized model that will be shown to 
exhibit collapse and revival behavior. This is a very general phe-
nomenon, and therefore it is relevant for a large variety of models. 
More generally, let us expand eigenenergies around a level n̄ [24,
25] in the form

En � En̄ + E ′̄
nδ + 1

2
E ′′̄

nδ2 + 1

6
E ′′′

n̄ δ3 (9)

where δ is defined by δ = n − n̄, n̄ is the state with maximal prob-
ability for a displaced ground state of a harmonic oscillator, E ′̄

n , 
E ′′̄

n and E ′′′
n̄ are derivatives of the energy with respect to the quan-

tum number n, calculated at n̄. We consider a situation where the 
derivatives decrease rapidly with the order, so that

E ′̄
n � E ′′̄

n � E ′′′
n̄ . (10)

This is the case for high energy levels n if the energy is to a 
good approximation proportional to a power of the quantum num-
ber n [8]. From condition (10) follows the separation of time scales 
in the system dynamics.

In Section 2 the dynamics of observables is calculated for the 
simple model (6) while in Section 3 possible experimental real-
izations in the field of cold atoms are presented. The results are 
summarized and discussed in Section 4.

2. Collapse and revival of the expectation values of position and 
momentum

In this section we study the expectation values of the posi-
tion and momentum operators for an initial Gaussian wavepacket 
displaced by some distance d from the minimum of the poten-
tial. For small β the system exhibits collapses and revivals [23]. 
This phenomenon is explained in terms of the semiclassical ap-
proximation using a method similar to the one used in [22]. The 
phenomenon was found numerically and semianalytically for the 
system (1) in [23]. Since this phenomenon is expected to take 
place for high energy levels, where the energy is much larger than 
the level spacing, we use the semiclassical approximation in the 
leading order.

It is important to remember that second order in β of the 
semiclassical approximation is more accurate than second order in 
perturbation theory for high energy levels (see detailed discussion 
in [22]). Using the semiclassical spectrum the evolution of 

〈
x̂ (t)

〉
and 

〈
p̂ (t)

〉
is calculated.

2.1. Energy spectrum calculation using the WKB (Wentzel, Kramers and 
Brillouin) approximation

In order to use the WKB approximation, we calculate the action 
integral as

I = 1

π

ã∫
−̃a

pdx (11)

= 1

π

ã∫
−̃a

√
2

(
E − 1

2
x2 − β

4
x4

)
dx

where ±̃a are the turning points of the path related to the energy 
by

E = 1

2
ã2 + β

4
ã4. (12)

The integral is calculated to the second order in β and is found to 
be

I = E − 3

8
βE2 + 35

64
β2 E3. (13)

This is the value of the action for a fixed value of energy and β . 
Solving for the energy as function of the action to the second order 
in β results in

E = I + 3

8
β I2 − 17

64
β2 I3. (14)

The action is quantized as

In = n + 1

2
. (15)

Substituting (15) in (14), the energy spectrum of the Hamiltonian 
to second power of β yields

En =
(

n + 1

2

)
+ 3β

8

(
n2 + n + 1

4

)
(16)

− β2
(

17

64
n3 + 51

128
n2 + 51

256
n + 17

512

)
.

A slightly different spectrum is obtained by using quantum 
perturbation theory. Comparison to the exact result obtained by 
numerical diagonalization of the Hamiltonian (6) shows that the 
WKB approximation gives a more accurate energy spectrum, for 
high levels. For β = 1 · 10−4 (the value used in Fig. 1) the WKB 
method gives a more accurate result for n > 4.

2.2. Explicit calculation of 〈̂x (t)〉 and 
〈
p̂ (t)

〉
The initial wavefunction corresponds to the ground state of the 

harmonic oscillator |n = 0〉, displaced by d at time t = 0. The dis-
placement operator is T (d) = e−i p̂d . The displacement of the har-
monic ground state satisfies [23]

〈m| T (d) |0〉 = e− γ 2

2
γ m

√
m! = e− γ 2

2 Cm (γ ) , (17)

where

γ = d√
2

(18)

and

Cn (γ ) = γ n

√
n! . (19)
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