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In the present paper, for a symmetrical bistable system that is excited by a fractional Gaussian noise, 
via the examination upon the qualitative changes of the stationary probability densities, the phenomena 
of the noise induced transition and escape and the stochastic resonance, which is in the sense of that 
the particles oscillate between the double-well potential, are investigated. For a high noise intensity, 
the probability density function obtained by Monte Carlo method changes from bimodal to unimodal by 
decreasing the values of Hurst index H . However, in the low noise intensity regime the transition could 
not occur for all H . Based on numerical results we demonstrate the fact that the mean first passage 
time (MFPT) is dependent on the Hurst index H and the noise intensity D , and possesses an exponential 
form as T (D, H) = k1(H) exp(k2(H)/D). In particular, with a higher noise intensity, T (D, H) represents 
itself as a monotonous increasing function of the MFPT with the increasing H , whereas it exhibits as 
a non-monotonic function of H in the low noise intensity regime. Finally, nonlinear response theory 
is applied to investigate the stochastic resonance induced by Hurst index H and noise intensity D , for 
which we find that only for low noise intensities the stochastic resonance exists via increasing Hurst 
index which means the effect of noise reduction. This phenomenon is quite different from the one of the 
classical case.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In the last few decades, a great deal of mathematical and ex-
perimental efforts have been devoted to the study of stochastic 
dynamical systems in many fields like physics, chemistry, biology, 
engineering and finance [1–6]. The investigations of the effects 
of random fluctuations or noises become essential and significant 
since while the systems (especially the nonlinear systems) under 
consideration are driven by random forces, many new features can 
occur, such as noise-induced transport [7], noise-induced transition 
[8–10], escape problem (mean first passage time) [11–13], stochas-
tic resonance [1,14,15], coherence resonance [16] and so on. The 
first passage is a generic concept for quantifying when a random 
quantity such as the position of a diffusing molecule or the value 
of a stock crosses a preset target for the first time [17]. The so 
called first passage time is central to describe the kinetics in a 
large variety of systems and has been studied intensively across 
many branches of science [18–20].

* Corresponding author. Fax: +86 25 84892106.
E-mail addresses: weiwang1990@nuaa.edu.cn (W. Wang), xbliu@nuaa.edu.cn

(X. Liu).

Brownian motion and Gaussian white noise are the important 
concepts in stochastic dynamics. Brownian motion is a Gaussian 
process with independent increments and Gaussian white noise, 
the derivative process of Brownian motion, has independent values 
at each instant time. Though Gaussian white noise is an ideal-
ized noise with zero memory which does not occur in nature, 
it is extremely useful to model rapidly random fluctuating when 
the memory of the noise is extremely short compared to that of 
systems [21]. Meanwhile, the response of the systems driven by 
Gaussian white noise is Markov diffusion process which is easy to 
deal with by efficient mathematic techniques such as Ito stochastic 
differential equation and Fokker–Plank equation [2,21,22]. How-
ever, in the real world, there exist abundant random fluctuations 
or noises with long time memory, which may be modeled by frac-
tional Brownian motion (fBm) and fractional Gaussian noise (fGn) 
with Hurst index H defined in 0 < H < 1 [23,24]. Similarly to the 
Gaussian white noise, fGn is the derivative process of fBm [25]. 
The concept of fBm which was first introduced by Kolmogorov and 
reintroduced by Mandelbrot and Ness is a one-parameter exten-
sion of the classical Brownian motion since for H = 0.5 the fBm 
reduces to the Brownian motion and the fGn reduces to Gaussian 
white noise [25]. For H �= 0.5 fBm is a Gaussian process with de-
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pendent increments and fGn whose autocorrelation function has 
the form of power-law with heavy tail has long time memory. The 
fBm provides a powerful physical model for anomalous diffusion 
whose mean–squared displacement satisfies the power-law type 
[26]:

〈
x2(t)

〉 ∼ t2H (1)

For H < 0.5 we observe subdiffusion while in the case H > 0.5 the 
motion is superdiffusion. The fBm is widely used in modeling a 
variety of process including monomer diffusion in a polymer chain 
[27], diffusion of biopolymers in the crowded environment inside 
biological cells [28], and Econophysics [29]. Despite its popular-
ity the exact stochastic properties of fBm are not well understood. 
Fortunately, in the last few years a lot of effort has been devoted 
to the investigations of fBm. Grebenkov suggested an empirical 
approximation for the probability density which is numerically 
validated for fBm [30]. According to Deng and Barkai who inves-
tigated the time average mean square displacement for fBm, the 
convergence to ergodic behavior is slow and surprisingly the Hurst 
index H = 3/4 marks the critical point of the speed of conver-
gence [31]. In terms of the first passage problem, Jeon and Metzler 
obtained the power-law type first passage time density scales in 
the long-time limit by studying the survival probability and the 
corresponding first passage time density of fBm confined to a two-
dimensional open wedge domain with absorbing boundaries [32].

The motion of the systems governed by fGn can be described 
by a stochastic differential equations (SDE) in R:

dX(t)

dt
= f

(
t, X(t)

) + ξH (t) (2)

where f is a function: [0, T ] × R → R and ξH (t) is fGn. Its equiva-
lent form is

dX(t) = f
(
t, X(t)

)
dt + dB H (t) (3)

The stochastic process X(t) is a non-Markov diffusion process since 
the fGn has long time memory. If f ≡ 0 the stochastic process 
X(t) is fGm. Analysis of the dynamics of Eqs. (2) and (3) leads 
to the description of the stochastic dynamical behaviors for the 
non-Markov diffusion. In recent works, F.G. Li and B.Q. Ai [10] in-
troduced additive fGn into the anti-tumor model and discussed 
the noise-induced transition. O.Y. Sliusarenko et al. [13] studied 
the escape problem in a linear Langevin equation with fGn and 
found that the escape becomes faster for decreasing values of 
Hurst index. M.L. Deng and W.Q. Zhu obtained the sample solu-
tion, correlation function and mean-square value of the responses 
of linear and nonlinear oscillators to fGn with Hurst index between 
0.5 and 1 [33]. Goychuk and Hanggi presented an analytic study for 
subdiffusive escape of overdamped particles out of a cusp-shaped 
parabolic potential well which are driven by thermal, fGn in the 
case when the fluctuation dissipation theorem applies and found 
that the escape is governed asymptotically by a power-law scale 
[34]. Since bistable systems with double-well potential are widely 
applied in many disciplines and the research findings can be con-
veniently extended to multi-stable or more complex systems, they 
are of significance in the investigation of stochastic nonlinear dy-
namics. However, the transition, escape problem and stochastic 
resonance induced by external fGn in bistable systems have not 
been reported in the previous literatures. We should remark that 
in this paper we focus on the bistable systems in the presence of 
external fluctuations which do not obey the fluctuation dissipation 
theorem.

The main purpose of this paper is to investigate the transi-
tion, escape problem, stochastic resonance phenomenon and their 
relevant mechanisms in the bistable systems in the presence of ex-
ternal fGn.

This paper is organized as follows. In section 2, some prelimi-
naries such as the theory of fBm and fGn, methods to generate the 
fBm and a bistable system driven by fGn are introduced. In sec-
tion 3, the noise-induced transitions via the examination upon the 
qualitative changes of the stationary probability densities obtained 
by Monte Carlo method, are discussed. In section 4, the depen-
dence of the mean first passage time on noise intensity and Hurst 
index are analyzed. In section 5, the stochastic resonance induced 
by noise intensity and Hurst index is investigated respectively. In 
particular, the relevant mechanisms are discussed. The results are 
summarized in section 6 with conclusions drawn.

2. Preliminaries

A standard fBm B H (t) with Hurst index 0 < H < 1 is a contin-
uous and centered Gaussian process with autocorrelation function:

E
[

B H (t)B H (s)
] = 1

2

(
t2H + s2H − |t − s|2H)

t, s ≥ 0 (4)

which has the following properties:

(1) B H (0) = 0 and E[B H (t)] = 0, t ≥ 0
(2) B H (t) has homogeneous increments, i.e., B H (t + s) − B H (s) has 

the same law of B H (t), t, s ≥ 0
(3) B H (t) is a Gaussian process and E[B2

H (t)] = t2H , t ≥ 0
(4) B H (t) has continuous trajectories.

We consider the correlation between two increments of fBm. 
The covariance between B H (t + δt) − B H (t) and B H (s + δt) − B H (s)
with s − t = nδt and n positive integer is

ρH (n) = 1

2
(δt)2H [

(n + 1)2H + (n − 1)2H − 2n2H ]
(5)

For H = 0.5, we obtain ρH (n) = 0. The B H (t) is then a standard 
Brownian motion B(t) and the increments of process are indepen-
dent. For H > 0.5 the increments are positively correlated while 
they are negatively correlated for H < 0.5. More details of fBm can 
be found in Refs. [23,24].

The fGn is the derivative process of the fBm, i.e.,

ξH (t) = dB H (t)

dt
(6)

The fGn is a stationary Gaussian process with long time memory 
whose mean is zero and the autocorrelation function has the form 
of power-law:

R(τ ) = E
[
ξH (t + τ )ξH (t)

] = H(2H − 1)|τ |2H−2

+ 2H|τ |2H−1δ(τ ) (7)

For H = 0.5 the autocorrelation function exactly reduces to the 
Dirac function δ(τ ) for standard Gaussian white noise. In partic-
ular, for H < 0.5 Eq. (7) shows that the fGns are negatively corre-
lated. It follows that a step in one direction is likely followed by a 
step in the other direction, whereas for H > 0.5 the fGns are pos-
itively correlated indicting that successive steps tend to point in 
the same direction.

There are mainly five different methods to generate the fBm: 
the method of Mandelbrot, that of Sellan, the Choleski method, 
the Levinson one and the method of Wood and Chan [35,36]. In 
this paper, to investigate the long time behaviors of the systems, 
we adopt the method of Wood and Chan to generate the fBm since 
it is fast even for a large value of time step by using the discrete 
Fourier method [37,38]. Fig. 1(a), (b) and (c) show the simulated 
simple paths of fBm for H = 0.3, H = 0.5 and H = 0.8 respectively 
which are generated by the method of Wood and Chan. As can 
be seen, with increasing the values of Hurst index H the sample 
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