
Information and Software Technology 79 (2016) 79–105

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Evaluation and analysis of incorporating Fuzzy Expert System

approach into test suite reduction

Chin-Yu Huang

a , b , ∗, Chung-Sheng Chen

a , Chia-En Lai b

a Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
b Institute of Information Systems and Applications, National Tsing Hua University, Hsinchu, Taiwan

a r t i c l e i n f o

Article history:

Received 11 September 2015

Revised 4 June 2016

Accepted 21 July 2016

Available online 27 July 2016

Keywords:

Test suite reduction;

Tie-breaking;

Software testing;

Test suite minimization;

Fault detection effectiveness;

Fuzzy logic;

Test case prioritization

a b s t r a c t

Context: Software has become increasingly important in our modern society. However, when new features

are developed due to user requests, such requests could make the sizes of test-case pools bigger. Many

techniques are proposed to solve this problem, such as test suite reduction. However, the ability to expose

faults may be weakened when reducing the sizes of the test suites. In this paper, we propose some

methods using fuzzy logic in order to improve existing test-suite reduction techniques.

Objective: The main purpose of this research is to use a Fuzzy Expert System approach in order to enhance

the effectiveness of fault detection during software testing.

Method: Incorporating a Fuzzy Expert System into traditional test suite reduction techniques is presented

and studied. More objective criteria are used in order to compare the performance of our proposed and

selected test suite reduction methods. Some important measures (and metrics) will also be obtained and

discussed. Application of the Fuzzy Expert System approach for test case prioritization is also discussed.

Results: The experiments in three improved test-suite reduction techniques show that the modified algo-

rithms can reduce the size of test suites, which have improved the fault detection quality.

Conclusion: During software testing, test data are generally classified with Boolean logic. This method

can classify data into groups easily. However, there may be ambiguity in classifications due to similar

properties for certain data. Ambiguous data can be classified in each group. In this study, Boolean logic

will be replaced by fuzzy logic. Incorporating the Fuzzy Expert System approach into three traditional

test suite reduction techniques (i.e., HGS, GRE, and Greedy) is presented and evaluated. The experiments,

based on nine real subject programs ranging from 173 LOCs to 35,545 LOCs, have demonstrated that our

proposed Fuzzy-HGS, Fuzzy-GRE, and Fuzzy-Greedy algorithms can significantly reduce the sizes of test

suites while also improving fault detection effectiveness. For instance, Fuzzy-HGS, Fuzzy-GRE, and Fuzzy-

Greedy algorithms have almost the same reduction capability of test suite as traditional HGS, GRE, and

Greedy algorithms. But in terms of the percentage of fault detection effectiveness loss (FDE loss), both

Fuzzy-HGS and Fuzzy-GRE algorithms are averagely decreased by 21% and 5%, respectively. Additionally,

Fuzzy-Greedy algorithm still provide the lower FDE loss for large subject programs compared to tradi-

tional Greedy algorithm. Based upon the integrated theoretical foundation, the approaches presented in

this paper offer an efficient, useful software testing scheme in the testing and debugging phases.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In today’s technological world, software plays a key role in

many safety-critical (or life-critical) systems that often requires

an exceedingly rigorous certification process. Software testing is

generally used to verify whether or not the developed software

system meets those requirements. When a software project is

entering the testing phase, the development team usually has

∗ Corresponding author.

E-mail address: cyhuang@cs.nthu.edu.tw (C.-Y. Huang).

a well-specified set of test cases that should be run within the

minimal time. A test case is a document that has a set of test data,

predetermined input, expected output, and behavior. According

to the IEEE Standard 829-1998 [1] , test cases usually identify the

constraints on the test procedures resulting from a specific test

case, which are then separated from test designs; separation is

performed in order to allow for use in more than one design and

for reuse in other situations. A test suite is a collection of test

cases that are grouped and run together.

Traditionally, test data can be classified into groups by their

properties. However, there is ambiguity in such a classification

method due to similar properties for certain data. If ambiguous

http://dx.doi.org/10.1016/j.infsof.2016.07.005

0950-5849/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.infsof.2016.07.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2016.07.005&domain=pdf
mailto:cyhuang@cs.nthu.edu.tw
http://dx.doi.org/10.1016/j.infsof.2016.07.005

80 C.-Y. Huang et al. / Information and Software Technology 79 (2016) 79–105

data are classified into groups, they might be classified correctly.

However in some cases, such data can be classified incorrectly

into each group. A test suite typically contains both detailed

instructions for selected test cases and important information on

system configuration to be used during software testing. During

the software development life cycle (SDLC), test suite reduction

(or selection) demonstrates such a phenomenon. In many test

cases, testers have to reduce them or select the most suitable test

suites due to resource limitations. Thus, each test case must be

classified into either the selected or the unselected groups. Yet

there are some test cases in the unselected group that have better

properties in testing, and vice versa.

Therefore, managing the size of test cases is an important issue

in SDLC. More precisely, determining which test case to pick, which

test case to run next , or which test case to remove is desirable. In

the past, numerous approaches have been proposed to resolve this

problem, such as test suite reduction (also called test case mini-

mization). There are some heuristic Greedy algorithms applied to

solve this problem by repeating the following steps: (1) pick a test

case that satisfies the most requirements, or pick an arbitrary test

case if there is more than one candidate, and (2) mark all of the

requirements satisfied by the test case picked from step (1). The

two steps are repeated until all requirements are satisfied [2,3] .

For example, there is a heuristic algorithm proposed by Harrold

et al. [4] which finds a representative test suite from a test case

pool and that satisfies all requirements. However, this method

makes for a great deal of effort in the recursive test case selection.

For these existing heuristic algorithms, the size of test suites can

be reduced. But in practice, the project managers or developers

need further information about how well the test suites have been

reduced when compared with the original test suites. Since one

of the purposes of software testing is to detect and predict the

remaining faults, the fault detection capability has to be measured

and evaluated. Although much research has focused on test suite

reduction, selecting appropriate test cases- such as those with

better fault detection capability- is more useful than adding more

test cases in reduced test suites. Further, due to the growth of test

case pools, execution time in testing is also an important issue to

discuss. In the past, Lin and Huang [8] reported that a tie occurs if

more than one test case has the same importance, and thus have

proposed a tie-breaking technique.

Based on our past research, in this paper, we further pro-

pose and adopt the Fuzzy Expert System (FES) approach [9] in

order to enhance the fault-detection capability, which uses the

concept of partial members in each group to classify the test

cases. We will incorporate the FES approach into some traditional

(and well known) test suite reduction algorithms, such as the

Harrold–Gupta–Soffa (HGS) algorithm proposed by Harrold et al.

[4] , the GRE algorithm presented by Chen and Lau [10,11] , and the

Greedy algorithm [2,3] . Experiments are performed and discussed

based on nine real subject programs ranged from 173 LOCs to

35,545 LOCs [12,13] : tcas, schedule2, schedule, totinfo, printtokens2,

printtokens, replace, space , and make . In order to check the per-

formance of our proposed methods, make a fairly comprehensive

comparison with other existing test suite reduction methods, and

avoid bias, we use five criteria in this paper.

Our experiments show that our proposed Fuzzy-HGS, Fuzzy-

GRE, and Fuzzy-Greedy algorithms not only have the better test

suite reduction capability but also have better overall performance

on the fault detection capability and the execution time. For exam-

ple, the original suite size for tcas program of 173 LOCs is 38.62.

After performing the suite size reduction, the reduced suite size

is 5.00 and 5.07 for traditional HGS and our proposed Fuzzy-HGS

algorithms, respectively. With almost the same reduced suite size,

the Fuzzy-HGS algorithm just takes 1.331 s for performing the suite

size reduction, which is far more less than 5.718 s for traditional

HGS algorithm. Additionally, the Fuzzy-HGS algorithm still has bet-

ter fault detection capability compare to traditional HGS algorithm.

And further, the original suite size for space program of 9564 LOCs

is 1817.44. Similarly, after performing the suite size reduction, the

reduced suite size is 119.98 and 119.44 for traditional HGS and our

proposed Fuzzy-HGS algorithms, respectively. We can see that the

Fuzzy-HGS algorithm only takes 64.962 s for performing the suite

size reduction, but traditional HGS algorithm takes up to 3037.13 s.

It is obvious that our proposed Fuzzy-HGS algorithm consistently

performs better than traditional HGS algorithm.

The rest of this paper is organized as follows. In Section 2 , we

give a detailed survey of the test suite reduction techniques. The

reviews of some traditional test suite reduction techniques are

described in Section 3 . Section 4 discusses and shows how the

traditional test suite reduction algorithms can be integrated with

the FES approach. Experiments based on real subject programs

are performed in order to assess the performance of our proposed

approaches in Section 5 . Additionally, the discussions on threats

to validity are also given in Section 5 . The application of the FES

approach to prioritize test cases is presented in Section 6 . Finally,

some concluding findings are described in Section 7 .

2. Related works

Software testing is typically used to verify whether or not the

developed software meets its original requirements. In the phase

of software testing, testers usually have to ensure the correctness

of software by using different testing techniques and test cases.

Generally, developers need to find the major root causes of these

detected faults and then eliminate them in order to reduce the

reoccurrence of faults and the risks of software-failure. Altogether,

the quality of developed software can be significantly increased

and the risk of project-failure can be greatly reduced if we are

able to do more tests and identify the most error-prone modules

that are difficult to maintain as early as possible. However, this

could cause the size of test cases to become larger during software

testing, while large test case pools usually extend the project

release time. It is also time-consuming to rerun all the test cases

when a subject program is modified.

There is much research on test suite reduction techniques. For

example, Rothermel [5] observed that the test suite reductions can

compromise fault detection effectiveness. Wong [6] reported that

fixed size test sets may lead to a larger size reduction due to block

minimization than those of fixed coverage test sets, because of the

way they are generated. Wong also found that there is little or no

reduction in fault detection effectiveness for both types of test sets.

Additionally, Jeffrey and Gupta [7] proposed an approach called

Reduction with Selective Redundancy (RSR) in order to improve

fault detection capability. RSR selectively retains test cases during

test suite reduction. However, the extra process will increase test

time and overhead of reusing test suites. Heimdahl and George

[14] performed an experiment using a large case example of a

Flight Guidance System, generated reduced test-suites for a variety

of structural coverage criteria while preserving coverage, and

recorded their fault finding effectiveness. Their evaluation results

showed that the size of the specification-based test-suites was

dramatically reduced and that the fault detection of the reduced

test-suites was adversely affected.

Additionally, Sampath and Bryce [15] proposed ordering the test

cases in a reduced test suite in order to increase its rate of fault

detection, and Mansour and El-Fakih [16] adapted a hybrid genetic

algorithm to the test suite reduction problem. On the other hand,

Harder et al. [17] proposed a method to minimize the test suites by

considering the operational abstraction. Harder et al. argued that

an operational abstraction is a formal mathematical description

of the actual behavior of a program; further, the test case(s) that

Download English Version:

https://daneshyari.com/en/article/549655

Download Persian Version:

https://daneshyari.com/article/549655

Daneshyari.com

https://daneshyari.com/en/article/549655
https://daneshyari.com/article/549655
https://daneshyari.com

