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We study the effect of the electron–phonon interaction on the finite frequency dependent electronic 
thermal conductivity of two dimensional graphene. We calculate it for various acoustic phonons present 
in graphene and characterized by different dispersion relations using the memory function approach. It is 
found that the electronic thermal conductivity κe(T ) in the zero frequency limit follows different power 
law for the longitudinal/transverse and the flexural acoustic phonons. For the longitudinal/transverse 
phonons, κe(T ) ∼ T −1 at the low temperature and saturates at the high temperature. These signatures 
qualitatively agree with the results calculated by solving the Boltzmann equation analytically and 
numerically. Similarly, for the flexural phonons, we find that κe(T ) shows T 1/2 law at the low 
temperature and then saturates at the high temperature. In the finite frequency regime, we observe 
that the real part of the electronic thermal conductivity, Re[κe(ω, T )] follows ω−2 behavior at the low 
frequency and becomes frequency independent at the high frequency.

© 2017 Elsevier B.V. All rights reserved.

In recent times, Graphene [1–3] has attracted a lot of atten-
tion both in the fundamental and applied research due to its 
unique electronic and optical properties. These properties include 
anomalous high electrical conductivity, high thermal conductivity, 
quantum Hall effect, effect of impurities on the electric properties, 
etc. [4–17] which make the use of this material quite promising 
for the fabrication or design of the electronic devices. Among these 
properties, electrical conductivity, Hall effect have been discussed 
several times in literature, while there is lack of discussions in the 
electronic contribution to the thermal conductivity. Thus, in the 
present work, we focus on the electronic thermal conductivity of 
graphene.

In the literature, it is argued that the unusual high thermal con-
ductivity of graphene [18,19] is mainly contributed by the phonons 
and the electronic contribution is small, hence neglected. How-
ever, in real systems, the total thermal conductivity is expressed 
as the sum of the electronic and the phononic thermal conduc-
tivity. In different temperature limits, these thermal conductivi-
ties show different temperature behavior. In the high temperature 
limit, due to larger number of phonons the electronic thermal con-
ductivity shows temperature independent behavior [20–22] due 
to the scattering by electron–phonon interactions. On the other 
hand, the phononic thermal conductivity shows T −1 behavior due 
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to the dominating scattering mechanism by phonon–phonon inter-
actions. In the opposite limit i.e. the low temperature limit, the 
electronic and the phononic thermal conductivities are due to the 
interactions of electrons and phonons with impurities, boundaries, 
defects. These different scenarios of the electronic thermal con-
ductivity in both low and high temperature limits make this study 
important.

In case of metals, it has been depicted that at the low tem-
perature i.e. T � �D , �D being the Debye temperature, only the 
acoustic phonons within the phonon sphere of radius kph with 
kph � kD , where kD is the radius of Debye sphere, play a role 
in the electronic thermal conductivity [20–22]. In these three di-
mensional systems, it leads to T −2 behavior of the electronic 
thermal conductivity. In such systems, the radius of the Fermi 
sphere is larger than the radius of the Debye sphere i.e. 2kF � kD . 
Thus all phonons can scatter off the electrons. But in the sys-
tems where kF � kD , only small number of phonons can scatter 
off the electrons. These phonons are restricted within the en-
ergy range vskph ≤ 2vskF . This can be explained by introducing 
the new temperature scale known as Bloch Grüneisen (BG) tem-
perature which is smaller than the Debye temperature [23]. This 
scale defines two regimes i.e. low temperature (T � �BG) and 
high temperature (T � �BG) regimes for the electron–phonon in-
teraction in graphene. In the low temperature regime (T � �BG), 
the acoustic phonons with linear dispersion relation yield inverse 
temperature behavior to the electronic thermal conductivity (i.e. 
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κe ∼ T −1) and then change to the temperature independent behav-
ior in the high temperature regime (T � �BG) [24,25]. However, 
because of the two dimensional nature of the graphene, there are 
also other acoustic phonons known as flexural phonons or out 
of plane phonons which obey quadratic dispersion relation and 
hence give different power law behavior to the electronic ther-
mal conductivity. Thus the role of the different acoustic phonons is 
very important to understand the transport or the electronic ther-
mal conductivity of graphene. However most of the studies have
considered only the zero frequency limit. But for the generation 
of the integrated circuits, high frequency communication devices, 
the study of the electronic thermal conductivity in the dynamical 
regime is important as it may degrade the issue of the heat dissi-
pation within the systems [26–29].

With this motivation, we have examined the electronic thermal 
conductivity both in the zero frequency and the finite frequency 
regime using the memory function approach [30–34]. The advan-
tage of using memory function approach is that it directly deals 
with the dynamics of the transport [35]. Here we discuss the dy-
namical behavior of the electronic thermal conductivity due to the 
interactions of electrons with different acoustic phonons and also 
its difference with the behavior in normal metals. In the zero fre-
quency limit, our findings for the electronic thermal conductivity 
of graphene agrees qualitatively with the results calculated by solv-
ing the Boltzmann equation analytically and numerically [40,24,
25]. In the finite frequency regime, our findings may be impor-
tant from both the fundamental and the application points of view 
and may inspire important experimental studies in future.

This paper is organized as follows. In Sec. 1, first we discuss 
the basic idea of the thermal conductivity and its relation with the 
memory function. Then the model Hamiltonian considering only 
the electron–phonon interactions in graphene is discussed. Later, 
we discuss the phonon dispersion relation of different acoustic 
phonons. With these descriptions, we calculate the finite frequency 
and temperature dependent electronic thermal conductivity for 
different acoustic phonons. In Sec. 2, the results are presented in 
the two subsections. In one subsection, we discuss the electronic 
thermal conductivity in the zero frequency limit. In other subsec-
tion, the results for the finite frequency in different BG regimes 
has been discussed. Finally, in Sec. 3, we conclude.

1. Theoretical framework

1.1. Thermal conductivity

The thermal conductivity is defined as the rate of flow of heat 
across a unit area of cross section in a unit temperature gradi-
ent [36]. Mathematically, this can be depicted from the following 
expression

J Q = −κ∇T . (1)

Here J Q is the thermal current density and is defined as,

J Q = 1

m

∑
k

k.n̂(εk − μ)c†
kck, (2)

where ck (c†
k) is the annihilation (creation) operator having mo-

mentum k, εk is the electron energy dispersion of graphene, μ is 
the chemical potential, m is the electron mass and n̂ is the unit 
vector parallel to the direction of heat current. And in Eq. (1) ∇T
is the temperature gradient and κ is the thermal conductivity. The 
latter is known as response due to the change in the tempera-
ture gradient and is generally analyzed by various approaches [20,
21] where the gradient of the temperature is considered as static. 
But in the present work, we assume that ∇T is not static, while 

it oscillates with the external driving frequency ω. This oscillation 
leads to the dynamical variation of the thermal conductivity. Here 
we set h̄ = 1 and kB = 1 in our calculations.

To compute it, we employ the memory function approach. Fol-
lowing the latter approach, the dynamical thermal conductivity at 
complex frequency z and temperature T is defined as [22]

κ(z, T ) = i

T

χ0
Q Q (T )

z + M Q Q (z, T )
, (3)

where χ0
Q Q (T ) is the static thermal current–thermal current cor-

relation function i.e. χ0
Q Q (T ) = π

24
k3

F
m2 v F

T 2, where kF is the Fermi 
wave vector and v F is the Fermi velocity, M Q Q (z, T ) is the ther-
mal memory function.

It is known that within the perturbation theory, the thermal 
memory function can be expressed to the leading order in the 
electron–phonon coupling, as [37,35,22]

M Q Q (z, T ) = 〈〈[ J Q , H]; [ J Q , H]〉〉z=0 − 〈〈[ J Q , H]; [ J Q , H]〉〉z

zχ0
Q Q (T )

.

(4)

This is the complex memory function in which the imaginary part 
of the memory function describes the thermal scattering rate and 
the real part describes the mass enhancement factor. In the present 
work, we focus on the thermal scattering rate which leads to the 
real part of the thermal conductivity. Here for simplicity, we have 
ignored the mass enhancement contribution to the thermal con-
ductivity. To calculate it, we require the total Hamiltonian that is 
discussed in the next subsection.

1.2. Model Hamiltonian

We consider a two dimensional graphene with only electron–
phonon interactions. The Hamiltonian of such a system is de-
scribed as

H = H0 + Hep + Hph, (5)

where H0 = ∑
kσ εkc†

kσ ckσ and Hph = ∑
q ωq

(
b†

qbq + 1
2

)
corre-

sponds to the Hamiltonians of the free electrons and phonons 
respectively. Here ωq is the phonon energy dispersion, bq (b†

q)

is the phonon annihilation (creation) operator having phonon 
wave vector q = k − k′ and σ is the electron spin. Hep de-
scribes the electron–phonon interactions and is given as Hep =∑

kk′σ

[
D(k − k′)c†

kσ ck′σ bk−k′ + H .c.
]

, where D(q) is the electron–

phonon matrix element. The latter is usually written in the follow-
ing form [38,39]

D(q) = D0q√
2ρmωq

(
1 −

(
q

2kF

)2
)1/2

. (6)

Here D0 is the deformation potential coupling constant, ρm is the 
graphene mass density and ωq is the phonon energy dispersion.

1.3. Phonon dispersions

Before proceeding to compute the thermal scattering rate and 
the corresponding electronic thermal conductivity for the sake of 
completeness, we will first discuss the phonon dispersion relations 
in this subsection.

The thermal transport due to the electron–phonon interactions 
significantly depends on the characteristics of the phonon which 
are further determined by the two dimensional structure of the 
graphene. In graphene, there are two carbon atoms per hexagonal 
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