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In this Letter, we consider the problem of the dynamics of propagation of three-dimensional optical 
pulses (a.k.a. light bullets) with an Airy profile through a heterogeneous environment of carbon 
nanotubes. We show numerically that such beams exhibit sustained and stable propagation. Moreover, we 
demonstrate that by varying the density modulation period of the carbon nanotubes one can indirectly 
control the pulse velocity, which is a particularly valuable feature for the design and manufacturing of 
novel pulse delay devices.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Localized electromagnetic wave packet tends to spread in both 
space and time under the combined effects of dispersion and 
diffraction, which are always present in any medium. Over the 
past two decades, significant research activity has been dedicated 
to devising new ways to overcome these universal broadening ef-
fects in order to generate sustained localized wave packets [1]. 
Such localized wave packets that are localized in space and that 
can travel through a medium while retaining their spatiotemporal 
shape—in spite of diffraction and dispersion effects—are referred to 
as light bullets. When propagating through a nonlinear medium, 
three-dimensional (3D) light bullets tend to vanish as a conse-
quence of a host of instabilities [2]. However, recent advances in 
the development of new media with atypical electronic properties 
have opened new avenues in the generation of sustained propaga-
tion of light bullets. In turn, this has generated particular interest 
in relation with the peculiar nature and dynamics of propagation 
of these ultrashort optical pulses [3]. Light bullets have also gained 
significant attention in the field of nonlinear optics owing to po-
tential game-changing applications in modern optoelectronics.

In 2007, Airy optical beams have been achieved by the use of 
a spatial light modulator [4]. The latter propagates in free space 
retaining its form at a certain interval, and the trajectory of the 
main peak is bent recalling the rainbow. It is known that Airy 
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beams have infinite energy (i.e. they are physically unrealizable, 
but in practice they are approximately generated to some extent) 
and retain their intensity during the propagation. Thus, Airy beams 
propagate with an apparent lack of diffractive spreading effects. 
Moreover, there is increased resistance to amplitude and phase dis-
tortions. Other improvements have also been obtained with Airy–
Bessel wave packets producing linear light bullets [5]. These unique 
properties of such optical beams had been captured by earlier pi-
oneering studies based on theoretical analysis [6].

Carbon nanotubes (CNTs) have been used to generate media 
with unique features as a result of their nonlinear optical prop-
erties. CNTs have generated tremendous interest in the research 
community owing to the simplicity of their structure and their 
unique properties, which in turn contributed significantly to both 
the development in optical pulses propagation studies, as well as 
the development of optical devices based on them. Probably one of 
the most important feature of CNTs is the ability to use them as a 
medium for the formation of light bullets [7–11]. Usually the prop-
agation of optical pulses are considered in a uniform CNT environ-
ment that does not allow to control the pulse velocity. However, if 
the propagation velocity of light bullets is determined by the re-
fractive index of the medium and can vary within a wide range, 
one can perform a further modulation in the refractive index. In 
turn, this favors the formation of media with a modulated refrac-
tive index, thereby enabling the control of the propagation velocity 
of light bullets as well as the delay time.

As a consequence, various models of propagation of extremely 
short pulses in a heterogeneous environment have been proposed, 
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especially given that such an environment makes it possible to 
control not only the propagation velocity, but also, e.g., the trans-
verse structure of the pulse [12–14]. The most straightforward way 
to create such a heterogeneous environment—with CNTs and a spa-
tially modulated refractive index—is to get a nonuniform distribu-
tion of CNTs. This leads to a change in the propagation velocity 
of the optical pulse, and therefore one will be able to control the 
pulse delay time in such an environment.

Given these recent independent developments in terms of: 
(i) Airy wave packets as light bullets, and (ii) novel CNT-based in-
homogeneous media, it appears timely to investigate the details of 
the propagation of 3D ultrashort Airy beams in such inhomoge-
neous media based on CNTs. The present Letter presents the first 
such study based on a combination of theoretical and numerical 
analyses.

2. Fundamental equations

Consider the propagation of extremely short optical pulses in 
an environment of carbon nanotubes, where the electric field is 
directed along the axis of the nanotubes. The Hamiltonian of the 
electron subsystem reads

H = γ
∑

jσ

a†
jσ a jσ + c.c., (1)

where a†
jσ and a jσ are the creation and annihilation operators re-

spectively, for electron with spin σ located at the jth node, γ is 
the hopping integral determined by the overlap of the electron 
wave functions on the neighboring nodes. The abbreviation ‘c.c.’ 
in Eq. (1) stands for the complex conjugate term. Using the Fourier 
transform

a†
nσ = 1√

N

∑
j

a†
jσ exp(i jn),

anσ = 1√
N

∑
j

a jσ exp(−i jn), (2)

one can easily diagonalize the Hamiltonian by applying a Bogoli-
ubov transformation, thereby yielding the electron spectrum εs(p), 
which describes the properties of the electronic subsystem in the 
absence of Coulomb repulsion. For carbon nanotubes of the zigzag 
type, namely (m, 0), the dispersion relation for the energy of con-
duction electrons reads [15–17]:

εs(p) = ±γ
{

1 + 4 cos(ap) cos
(
π

s

m

)
+ 4 cos2

(
π

s

m

)}1/2
. (3)

Here, s = 1, 2 . . .m, γ ≈ 2.7 eV, a = 3b/2h̄, b = 0.142 nm is the 
distance between adjacent carbon atoms.

Maxwell’s equations in a cylindrical coordinates system can be 
written as

∂2E

∂z2
+ 1

r

∂

∂r

(
r
∂E

∂r

)
− 1

c2

∂2E

∂t2
+ 4π

c

∂j

∂t
= 0, (4)

where E is the electric field of the light wave, j is the electron 
current density, t is the time, and c is the light velocity in the 
medium. Let us modify Eq. (4) given our particular choice of the 
Coulomb gauge, E = − 1

c ∂A/∂t . Integrating Eq. (4) over time once, 
we obtain its generalization for a nonlinear medium as follows

∂2A

∂z2
+ 1

r

∂

∂r

(
r
∂A

∂r

)
− 1

c2

∂2A

∂t2
+ 4π

c
j = 0. (5)

The vector potential A and the current density j are assumed to 
have the following form A = {0,0, A(z, r, t)} and j = {0,0, j(z, r, t)}, 

respectively. By solving Eq. (5) for the vector potential A, one can 
deduce the current density

j = en(z, r)
∑

ps

vs

(
p − e

c
A(t)

)
〈a†

psaps〉, (6)

where vs(p) = ∂εs(p)/∂ p is the electron group velocity, n(z, r) is 
the electron density of CNTs system with possible variations along 
the radial coordinate r and the axial coordinate z. Angle brackets 
denote an average with the nonequilibrium density matrix ρ(t):

〈�〉 = Tr [�(0)ρ(t)] , (7)

where � is the arbitrary dynamic quantity, and Tr denotes 
the trace of a matrix. With account for the conservation law, [
a†

psaps,H
]

= 0, the equation of motion for the density ma-

trix gives us the relation 〈a†
psaps〉 = 〈a†

psaps〉0, where 〈�〉0 =
Tr [�(0)ρ(0)]. Note that ρ0 = exp (−H/kB T ) /Tr [exp (−H/kB T )], 
where ρ0 ≡ ρ(0), kB is the Boltzmann constant, and T is the tem-
perature. Expanding vs(p) in a Fourier series, we have

vs

(
p − e

c
A(t)

)

=
∑

k

Aks

{
sin(kp) cos

(
ke

c
A(t)

)
− cos(kp) sin

(
ke

c
A(t)

)}
,

where

Aks =
π/a∫

−π/a

vs(p) sin(kp)dp

are the coefficients of expansion which decrease with increasing k.
Given that the distribution function ρ0 is an even function of 

the quasi-momentum p, the averaging of sin(kp) vanishes, so that

vs

(
p − e

c
A(t)

)
= −

∑
k

Aks cos(kp) sin

(
ke

c
A(t)

)
. (8)

Substituting Eq. (8) into Eq. (6) and performing the summation 
over s and p, we come to

j = −en(z, r)
∑

k

Bk sin

(
ke

c
A(t)

)
, (9)

Bk =
m∑

s=1

π/a∫
−π/a

dp Aks cos(kp)
exp(−βεs(p))

1 + exp(−βεs(p))
,

where n0 is the equilibrium electron concentration, β = 1/kB T . 
Note that the current density given by Eq. (9) explicitly contains 
the nonuniform electron density n(z, r). Further, in the numeri-
cal calculations, this distribution will be given the simple periodic 
form

n(z, r) = 1 + α cos

(
2π z

χ

)
,

where α is the nonlinearity modulation depth, χ stands for the 
modulation period. Note that in this paper we only consider mod-
ulations along the z-axis.

It is worth noting that due to the field inhomogeneity along 
certain directions (e.g., the field is directed and nonuniform along 
the z-axis), the current is also not uniform. The heterogeneity of 
the current causes an accumulation of charges in some areas that 
can be assessed from the charge conservation law:
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