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Magnetic and transport properties of silicene in the presence of perpendicular electromagnetic fields and 
a ferromagnetic material are studied. It is shown that for small exchange field, the magnetic moment 
associated with each valley is opposite for the other and it gives a shift in band energy, by a Zeeman-like 
coupling term. Thus opening a new horizon for valley–orbit coupling. Magnetic proximity effect is seen to 
adjust the spintronics of each valley. Valley polarization is calculated using the semi classical formulation 
of electron dynamics. It can be modified and measured due to its contribution in Hall conductivity. 
Quantum phase transitions are observed in silicene, providing a tool to control the topological state 
experimentally. The strong dependence of the physical properties on valley degree of freedom is an 
important step towards valleytronics.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Silicene is a monolayer of silicon atoms that forms a two di-
mensional honeycomb lattice. Due to its unique properties, silicene 
has attracted much attention both theoretically and experimentally 
[1–5]. Though fabrication and synthesis of silicene was a challenge 
because of its air stability issue, but researchers fabricated it using 
a growth transfer process and made transistors working at room 
temperature. This approach is proposed to be effective for other 
two dimensional materials like germanene and phosphorene [40]. 
There is Dirac like electron dispersion at K points of the Bril-
louin zone in silicene as well. This and many other similarities 
are observed because they all come from the same column on the 
periodic table. But silicene possesses stronger SOC than graphene, 
which can be increased under strain. Silicene is a model system for 
studying the spin and valley physics not prominent in graphene 
due to the smaller SOC. The band gap is tunable with external 
electric field. The sites on the sub-lattices are in different verti-
cal planes with separation, causing silicene to be buckled. When 
electric field perpendicular to the plane is applied, then on site 
potential difference �z arises [6,7].

Over the past few years, it was examined that Berry curva-
ture has a major role on the physical properties of materials and 
a range of phenomena, such as orbital magnetism, Hall effects 
(charge and spin) and polarization of electrons. It is an intrinsic 
property of bands as it depends on the wave function only. It is 
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non-zero in crystals with broken inversion or time-reversal sym-
metry [8]. Previously valley contrasting properties were studied in 
graphene [9]. In silicene it was discussed with electric field ap-
plied to the system [10] and in the presence of magnetic field 
[11]. It was observed that graphene [9] and TMD [12] show val-
ley contrasting behavior in the presence of substrate potential 
only. For TMD there is an extra contribution from spin splitting 
and that leads to asymmetric Landau levels [13]. For graphene 
valley-dependent physics, generation and experimental evaluation 
of valley polarization, were explored [14–17]. Creating valley po-
larization is rather less straightforward but has been shown for 
AlAs Bismuth, graphene and MoS2 [18]. Valley degree of freedom 
is controlled using circularly polarized light which gives the possi-
bility of the use of valley excitons for the applications in quantum 
information and ultrafast devices. With optical light, they are pro-
posed to open up the possibility of coherent manipulation of the 
valley polarization in TMD [32,41–43].

The Quantum Hall effect is an important area of condensed 
matter physics from 1980s to date. From two dimensional electron 
gas to silicene, charge and spin responses have been studied in 
the presence of electromagnetic fields [19–24]. Similar to spin, val-
leys give another degree of freedom, to study valleytronics [9,25]. 
In graphene, valley polarization has been proposed to be detected 
with broken inversion symmetry. Each valley is characterized by 
opposite Hall transport i.e. the carriers flow in different transverse 
edges when electric field is applied perpendicular to the system 
[9]. The valley polarized quantum anomalous Hall state in silicene 
has been predicted. In the presence of exchange field with intrinsic 
and extrinsic Rashba coupling, quantum anomalous Hall effect has 
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List of abbreviations

SOC Spin Orbit Coupling
TRS Time Reversal Symmetry
TI Topological Insulator
QHE Quantum Hall Effect

BI Band Insulator
TMD Transition Metal Dichalcogenides
QSHE Quantum Spin Hall Effect

shown non-zero Chern numbers [26]. Valleytronics is an emergent 
field which deals with valley based electronic applications and it 
needs valley degree of freedom to be treated separately to evalu-
ate the contrasting physics of two valleys effectively [33–37].

The phase transition occurs in silicine from topologically trivial 
to a band insulating state and further to a semi metallic state un-
der inhomogeneous perpendicular electric field [10,27]. The com-
bination of an electric and magnetic fields with intrinsic SOC also 
leads to topological phase transition [11]. Silicene has not been 
discussed with proximity effect by studying the physical phe-
nomenon as studied in this article.

In present article it is shown that silicene, in the presence of 
electric and magnetic fields taken in proximity with a magnetic 
material, has opposite Berry curvature for the valleys, thus dif-
ferent magnetic moments resulting in net magnetization, for low 
exchange field. It is interesting to notice such magnetic moment 
relying strictly on valley degree of freedom, which is similar to the 
properties of spin and a Zeeman like interaction. Moreover, this 
magnetic momentum can be tuned by the buckled silicene struc-
ture, external electric field and exchange term. In addition to this, 
proximity effect has caused the suppression of one type of spin 
and favored the other in the calculation of valley magnetic mo-
ments; which is proposed to define a new phenomenon named 
valley–spin coupling which is one of the uniqueness of the arti-
cle. Exchange field due to proximity with ferromagnetic material is 
seen to shift the degeneracy point of opposite valleys from zero. 
The magnetization and valley Hall effect provides a way to exper-
imentally observe the phenomenon. Valley polarization has also 
been calculated and plotted, showing tuning of polarization with 
external electric field and chemical potential. Thus an important 
aspect of spin i.e. its accumulation or polarization is also being 
proposed to appear for valleys in silicene. The quantum phase 
transition in silicene in the presence of electromagnetic fields and 
ferromagnetic proximity is clear from Hall conductivity plots. The 
exchange field due to proximity effect causes a transition in spin 
Hall conductivity of each valley while net spin conductivity re-
mains unchanged. The physical properties discussed here for two 
dimensional physical system under these external parameters have 
never been studied before.

2. Valley dependent Berry curvature and magnetic moment

Silicene sheet in proximity with a magnetic material is taken in 
xy-plane, with electric and magnetic fields perpendicular to it. The 
effective Hamiltonian is given [26,31] as:

Hτz
sz = h̄v

[
kx(1s ⊗ τz ⊗ σx) + ky(1s ⊗ 1τ ⊗ σy)

]
− �so[sz ⊗ τz ⊗ σz] + �z[1s ⊗ 1τ ⊗ σz]
+ h[sz ⊗ 1τ ⊗ 1σ ] (1)

The first term is graphene like for Dirac fermions in buckled sil-
icene with v = 5 × 105 m/s, sz is the spin index and τz = ±1 is a 
symbol used to indicate valley K and K ′ , the second term is SOC 
term as described by Kane and Mele [24], where �so is the spin 
orbit coupling gap induced by this term; taken to be 7.9 meV [29]. 
From density functional theory calculations �so = 1.55 meV [6,7,
44] and tight binding calculations �so = 7.9 meV [44]. The next 

term is associated with electric field with �z = a0 Ez , where Ez
is an electric field which is applied perpendicular to the silicene 
sheet and a0 = 0.23A0. h is an exchange field in the last term due 
to proximity effect, h = 1.1 meV [31], h = 9 meV [39], σi are the 
Pauli matrices acting in the pseudospin space which differentiate 
A and B sub-lattices. Valley physics arises because of the inversion 
symmetry breaking and here electric field plays the role.

In the presence of perpendicular magnetic field B , the vec-
tor potential is taken to be (0, Bx, 0). The Hamiltonian defined in 
Eq. (1) after Peierls substitution becomes:

Hτz
sz = h̄v

[(
kx + e Ax

h̄

)
(1s ⊗ τz ⊗ σx)

+
(

ky + e A y

h̄

)
(1s ⊗ 1τ ⊗ σy)

]

− �so[sz ⊗ τz ⊗ σz] + �z[1s ⊗ 1τ ⊗ σz]
+ h[sz ⊗ 1τ ⊗ 1σ ] (2)

Taking π = k + e A
h̄ , ω = v

√
2eB

h̄ = v
lB

, lB being the magnetic length. 

Let a = lB√
2
[πx − iπy], a† = lB√

2
[πx + iπy] be the annihilation and 

creation operators respectively.
The energy after diagonalizing the Hamiltonian in Eq. (2) is:

Eτz
sz (n, λ) = hsz + λ

√
nh̄2 w2 + (�sosz − �zτz)2, (3)

where λ = +/− showing the electron/hole band and n is an inte-
ger showing Landau level.

The zero mode energy is:

Eτz
sz (0, λ) = hsz + λ(�sosz − �zτz). (4)

The interplay between �so and �z play a major role in tuning the 
energy. The zero modes show a phase transition from TI to BI for 
zero exchange field due to band inversion [29] but with non-zero 
exchange field degeneracy points are shifted.

The corresponding wave functions are calculated to be:

Ψ
τz
sz (n) =

(
t1Φn−1

t2Φn

)
, (5)

Ψ
τz
sz

(
n′) =

(
t1Φn′

t2Φn′−1

)
, (6)

where Φn is Hermite Polynomial, t1 = sin( θn
2 ), t2 = cos( θn

2 ) with 
θn = tan−1(

√
nh̄w

(�so sz−�zτz)
).

With exchange field of 9 meV dispersion relation exhibits shift 
in Dirac point from 0 eV to 0.01 eV as depicted in Figs. 1(a) and 
2(a). Interestingly Dirac point for spin up of both valleys is shifted 
to the conduction band and spin down to the valence band. Thus 
the polarization of spins is possible, which is an important step for 
spintronics. Exchange field is coupled to spin that is the reason of 
its role in spin dependent devices.

Similar to gauge field tensor in electrodynamics, Berry curva-
ture is a gauge-field tensor. It is a gauge invariant and thus ob-
servable. In addition to the electron dynamics, Berry curvature has 
a major role on transport properties, the density of states of elec-
trons defined in the phase space and thermodynamic behavior of 
crystals.
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