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Computing the generalized dimensions Dq of a complex network requires covering the network by a 
minimal number of “boxes” of size s. We show that the current definition of Dq is ambiguous, since 
there are in general multiple minimal coverings of size s. We resolve the ambiguity by first computing, 
for each s, the minimal covering that is summarized by the lexicographically minimal vector x(s). We 
show that x(s) is unique and easily obtained from any box counting method. The x(s) vectors can then 
be used to unambiguously compute Dq . Moreover, x(s) is related to the partition function, and the first 
component of x(s) can be used to compute D∞ without any partition function evaluations. We compare 
the box counting dimension and D∞ for three networks.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A network G = (N , A) is a set N of nodes connected by a set 
A of arcs. For example, in a friendship social network [21], a node 
might represent a person and an arc indicates that two people are 
friends. In a co-authorship network, a node represents an author, 
and an arc connecting two authors means that they co-authored 
(possibly with other authors) at least one paper. In a communica-
tions network [14], a node might represent a router, and an arc 
might represent a physical connection between two routers. Many 
applications of network models are discussed in [2]. We use the 
term “complex network” to mean an arbitrary network without 
special structure (as opposed to, e.g., a regular lattice), for which 
all arcs have unit cost (so the length of a shortest path between 
two nodes is the number of arcs in that path), and all arcs are 
undirected (so the arc between nodes i and j can be traversed in 
either direction).

There are many measures used to characterize complex net-
works. The degree of a node is the number of arcs having that 
node as one of its endpoints, and one of the most studied mea-
sures is the average node degree [11]. The clustering coefficient 
quantifies, in social networking terms, the extent to which my 
friends are friends with each other. The diameter � is defined 
by � ≡ max{ dist(x, y) | x, y ∈N }, where dist(x, y) is the length of 
the shortest path between nodes x and y. (We use “≡” to denote 
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a definition.) Other network measures include the average path 
length [1], the box counting dimension dB ([8,19]), the informa-
tion dimension dI ([17,22]), and the correlation dimension dC ([9,
16,18]).

In [17], Rosenberg showed that the definition proposed in [22]
of the information dimension dI of a complex network G is am-
biguous, since dI is computed from a minimal covering of G by 
“boxes” of size s, and there are in general different minimal cov-
erings of G by boxes of size s, yielding different values of dI . 
Using the maximal entropy principle of Jaynes [7], the ambigu-
ity is resolved for each s by maximizing the entropy over the set 
of minimal coverings by boxes of size s. We face the same ambi-
guity when using box counting to compute Dq (as in the method 
proposed in [20]), since the different minimal coverings by boxes 
of size s can yield different values of Dq . We illustrate this inde-
terminacy, for a very simple network, in Section 3. Thus different 
researchers applying different methods for computing a minimal 
covering of the same network might compute very different values 
of Dq . The solution to this indeterminacy is to select, for each s, 
the minimal covering of G satisfying some appropriate criterion 
that guarantees uniqueness. Moreover, the method used to select 
the unique minimal covering should require only negligible addi-
tional computation beyond what is required to compute a minimal 
covering.

A natural way to obtain a unique minimal covering for a given s
and q is to compute a minimal covering that minimizes the parti-
tion function; we call such a covering an “(s, q) minimal covering”. 
We show that for q > 1 an (s, q) minimal covering will try to 
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equalize the number of nodes over all boxes in a minimal covering. 
An (s, q) minimal covering can be computed by a minor modifica-
tion of whatever method is used to compute a minimal covering.

Although the new notion of (s, q) minimal coverings removes 
the ambiguity in the calculation of Dq , it is chiefly of theoretical 
interest, since we do not want to compute an (s, q) minimal cov-
ering for each s and q. Rather, we want to compute Dq using only 
a single minimal covering for each s. To this end, we introduce the 
new notion of a lexico (short for lexicographically) minimal sum-
mary vector x(s), which summarizes a minimal covering of size s. 
The value x j(s) is the number of nodes in box B j of a minimal 
covering, and x j(s) is non-increasing in j. We prove that x(s) is 
unique for each s and that x(s) summarizes an (s, q) minimal cov-
ering for all sufficiently large q. Computing x(s) requires essentially 
no extra computation beyond what is required to compute a min-
imal covering. Since for each s there is a unique lexico minimal 
vector x(s), and x(s) summarizes a minimal covering, we can use 
the x(s) vectors to unambiguously compute Dq .

We also show that D∞ ≡ limq→∞ Dq can be computed from the 
x1(s) values, where x1(s) is the first component of x(s), without 
any partition function evaluations. We illustrate this by computing 
D∞ for three networks, and comparing D∞ to the box counting 
dimension dB . For two of the three networks dB > D∞ and for the 
third network dB ≈ D∞ .

We emphasize that this paper does not propose a new box 
counting method for computing the generalized dimensions Dq of 
a network. Nor is our goal to compare Dq with other network di-
mensions such as dB , dC , or dI . Rather, our intent is to introduce 
the x(s) summary vectors, describe their interesting properties, 
and show how any box counting method can easily be modified 
to compute the x(s) vectors, which can then be used to unambigu-
ously compute Dq .

2. Preliminary definitions

Throughout this paper, G will refer to a complex network with 
node set N and arc set A. We assume that G is connected, mean-
ing there is a path of arcs in A connecting any two nodes. Let 
N ≡ |N | be the number of nodes. The network B is a subnetwork 
of G if B is connected and B can be obtained from G by deleting 
nodes and arcs. For each positive integer s such that s ≥ 2, let B(s)
be a collection of subnetworks (called boxes) of G satisfying two 
conditions: (i) each node in N belongs to exactly one subnetwork 
(i.e., to one box) in B(s), and (ii) the diameter of each box in B(s)
is at most s −1. We call B(s) a covering of G of size s, or more sim-
ply, an s-covering. We do not consider B(s) for s = 1, since a box 
of diameter 0 contains only a single node. Define B(s) = |B(s)|, so 
B(s) is the number of boxes in B(s). The s-covering B(s) is min-
imal if B(s) is less than or equal to the number of boxes in any 
other s-covering. For s > �, the minimal s-covering consists of a 
single box, which is G itself. The term “box counting” refers to 
computing a minimal s-covering of G for a range of values of s. In 
general, we cannot easily compute a minimal s-covering, but good 
heuristics are known (e.g., [3,8,15,19,23]).

The next set of definitions concern the generalized dimensions 
of a geometric object. Consider a dynamical system in which mo-
tion is confined to some bounded set � ⊂ R

E (E-dimensional 
Euclidean space) equipped with a natural invariant measure σ . De-
fine a “box” to be a neighborhood (centered at some point) of �. 
We cover � with a set B(s) of boxes of diameter s such that 
σ(B j) > 0 for each box B j ∈ B(s) and such that for any two boxes 
Bi, B j ∈ B(s) we have σ(Bi ∩ B j) = 0 (i.e., boxes may overlap, but 
the intersection of each pair of boxes has measure zero). Define the 
probability p j(s) of B j by p j(s) ≡ σ(B j)/σ (�). In practice, p j(s)
is approximated by N j(s)/N , where N is the total number of ob-

Table 1
Symbols and their definitions.

Symbol Definition

� network diameter
B(s) covering of G by boxes of size s
B(s) cardinality of B(s)
B j box in B(s)
dB box counting dimension
Dq generalized dimension
dI information dimension
G complex network
N number of nodes in G
N j(s) number of nodes in box B j ∈ B(s)
p j(s) probability of box B j ∈ B(s)
R

E E-dimensional Euclidean space
x(s) vector summarizing the covering B(s)
Zq

(
B(s)

)
partition function value for the covering B(s)

Z(x,q) partition function value for the summary vector x

served points and N j(s) is the number of points in box B j [13]. 
For q ∈R, define

Zq
(
B(s)

) ≡
∑

B j∈B(s)

[p j(s)]q . (1)

For q > 0 and q 
= 1, the generalized dimension Dq was defined in 
1983 by Grassberger [5] and by Hentschel and Procaccia [6] as

Dq ≡ 1

q − 1
lim
s→0

log Zq
(
B(s)

)
log s

. (2)

Since definition (1) was presented only in the context of a geo-
metric object, we extend the definition to a complex network. Let 
B(s) be an s-covering of G . For B j ∈ B(s), define p j(s) ≡ N j(s)/N , 
where N j(s) is the number of nodes in B j . For q ∈ R, we use (1)
to define Zq

(
B(s)

)
, and we call Zq

(
B(s)

)
the partition function value

for B(s).
For convenience, the symbols used in this paper are summa-

rized in Table 1.

3. Minimizing the partition function

The method of [20] for computing Dq for G is the following. 
For each s, compute a minimal s-covering B(s) and Zq

(
B(s)

)
. (In 

practice, if using a randomized box counting heuristic, Zq
(
B(s)

)
is 

the average partition function value, averaged over some number 
of executions of the heuristic.) Then G has the generalized dimen-
sion Dq (for q 
= 1) if over some range of s and for some constant c

log Zq
(
B(s)

) ≈ (q − 1)Dq log(s/�) + c . (3)

This definition is ambiguous, since different minimal s-coverings 
can yield different values of Zq

(
B(s)

)
. In particular, [17] showed 

that the value of dI for G depends on the particular minimal 
s-coverings of G selected, and proposed the notion of a maxi-
mal entropy minimal covering for use in computing dI . A simi-
lar ambiguity arises in defining Dq for G , since different minimal 
s-coverings can yield different box probabilities p j(s) and hence 
different values of Dq .

Example 1. Consider the “chair” network of Fig. 1, which shows 
two minimal 3-coverings and a minimal 2-covering. Choosing 
q = 2, for the covering B̃(3) from (1) we have Z2

(
B̃(3)

) = ( 3
5 )2 +

( 2
5 )2 = 13

25 , while for B̂(3) we have Z2
(
B̂(3)

) = ( 4
5 )2 + ( 1

5 )2 = 17
25 . 

For B(2) we have Z2
(
B(2)

) = 2( 2
5 )2 + ( 1

5 )2 = 9
25 . If we use B̃(3)

then from (3) and the range s ∈ [2, 3] we obtain D2 = (
log 13

25 −
log 9

25

)
/(log 3 − log 2) = 0.907. If instead we use B̂(3) and the same 

range of s we obtain D2 = (
log 17

25 − log 9
25

)
/(log 3 − log 2) = 1.569. 
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