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Computing the generalized dimensions Dq of a complex network requires covering the network by a 
minimal number of “boxes” of size s, for a range of s. We show that, unlike the case for a geometric 
multifractal, for a complex network the shape of the Dq vs. q curve can be monotone increasing, or 
monotone decreasing, or even have both a local maximum and a local minimum, depending on the range 
of box sizes used to compute Dq . We provide insight into this behavior by deriving a simple closed-form 
expression for the derivative of Dq at q = 0. The estimate depends on the ratio of the geometric mean of 
the box masses (where the mass of a box is the number of nodes it contains) to the arithmetic mean of 
the box masses.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A multifractal is a fractal that cannot be characterized by a sin-
gle fractal dimension such as the box counting dimension. The in-
finite number of fractal dimensions needed to characterize a mul-
tifractal are known as generalized dimensions. Generalized dimen-
sions of geometric multifractals were proposed independently in 
1983 by Grassberger [7] and by Hentschel and Procaccia [9]. They 
have been intensely studied, e.g., [17] and widely applied (e.g., [16,
26]). Given N points from a geometric multifractal (e.g., the strange 
attractor of a dynamical system [18]), the generalized dimension 
Dq is computed by covering the N points with a grid of boxes of 
linear size s, computing the fraction pj(s) of the N points in box 
B j of the grid, computing the partition function Zq(s) = ∑

j[pj(s)]q

(where the sum is over all boxes in the grid), and examining how 
log Zq(s) scales with log s. When q = 0 this computation yields the 
box counting dimension dB , so D0 = dB . When q = 1 we obtain the 
information dimension dI [3], so D1 = dI . When q = 2 we obtain 
the correlation dimension dC [8], so D2 = dC .

Complex networks have also been studied from a multifractal 
perspective. A network G = (N , A) is a set N of nodes connected 
by a set A of arcs. For example, in a friendship social network, 
a node might represent a person and an arc indicates that two 
people are friends. Many applications of network models are dis-
cussed in [2]. We use the term “complex network” to mean an 
arbitrary network without special structure (as opposed to, e.g., a 
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regular lattice), for which all arcs have unit cost (so the length of 
a shortest path between two nodes is the number of arcs in that 
path), and all arcs are undirected (so the arc between nodes i and 
j can be traversed in either direction). The box counting dimension 
of a complex network was proposed in ([12,24,25]), the informa-
tion dimension was studied in ([22,29]), the correlation dimension 
was studied in ([13,21]), and generalized dimensions were studied 
in ([4,23,27,28]).

In [22], Rosenberg showed that the definition proposed in [29]
of the information dimension dI of a complex network G is am-
biguous, since dI is computed from a minimal covering of G by 
“boxes”, and there are in general different minimal coverings of 
G by boxes of size s, and these different minimal coverings yield 
different values of dI . The ambiguity is resolved for each s by max-
imizing the entropy over the set of minimal coverings by boxes of 
size s. The same ambiguity is present when using box counting to 
compute Dq (as in [27]), since the different minimal coverings by 
boxes of size s can yield different values of Dq . The solution pro-
posed in [23] is to select, for each s, the minimal covering yielding 
the lexico (short for “lexicographically”) minimal summary vector 
x(s). The value xj(s) is the number of nodes in box B j of the min-
imal covering, and xj(s) is non-increasing in j. For each s, there is 
a unique x(s), and for all sufficiently large q the minimal covering 
summarized by x(s) minimizes the partition function Zq(s) over 
the set of minimal coverings of size s. Computing x(s) requires 
negligible extra computation beyond what is required to compute 
a minimal covering. The x(s) vectors can be used to unambiguously 
compute Dq for q �= 1.
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Whereas for geometric multifractals it is known [7] that Dq
is monotone non-increasing in q, here we show that for a com-
plex network, even when Dq is computed using the lexico minimal 
summary vectors x(s), the Dq vs. q curve is not necessarily mono-
tone non-increasing, and this curve can assume different shapes, 
depending on the range of box sizes used to compute Dq . To see 
how the Dq vs. q curve can assume different shapes for the same 
complex network G , consider how Dq is computed. The computa-
tion is based upon the scaling of Zq(s) = ∑

j[pj(s)]q , where pj(s)

is the fraction of nodes in box B j of a minimal covering of G
by boxes of size s. For a given q, we identify a range [L, U ] of 
box sizes, where L < U , such that log Zq(s) is approximately lin-
ear in log s for s ∈ [L, U ]. The estimate of Dq is 1/(q − 1) times 
the slope of the linear approximation [23]. While in theory L
and U could depend on q, in practice, as in this paper, we as-
sume that a single choice of L and U is used to compute Dq for 
all q. Rather than estimating Dq using a technique such as re-
gression over the range [L, U ] of box sizes, we instead estimate 
Dq using only the two box sizes L and U . Such a two-point es-
timate was used in [21], where it was shown that even for as 
simple a network as a one-dimensional chain of nodes, the two-
point estimate has very desirable properties. From an analytical 
point of view, the huge benefit of the two-point estimate is that 
it yields a closed-form estimate of Dq; we denote this estimate by 
Dq(L, U ).

We plot Dq(L, U ) vs. q for several networks, and show that the 
Dq(L, U ) vs. q curve can assume dramatically different shapes, de-
pending on the choice of L and U : the curve can be monotone 
increasing, or monotone decreasing, or have a local minimum or a 
local maximum, or even have both a local minimum and a local 
maximum. (Such behavior stands in sharp contrast to the behav-
ior of a geometric multifractal, for which the curve is monotone 
non-increasing.) We provide insight into this behavior by deriv-
ing a simple closed-form expression for D ′

0(L, U ), the derivative 
of Dq(L, U ) at q = 0. Interestingly, this derivative depends on the 
ratio of the geometric mean of the box masses to the arithmetic 
mean of the box masses. We discuss the relationship of this ra-
tio to the maximal entropy criterion [22] and the lexico minimal 
criterion [23] used to compute dI and Dq , respectively. The the-
oretical results we present suggest there is a rich theory of the 
generalized dimensions of a complex network, and in Section 6 we 
suggest some areas for investigation. For convenience, the symbols 
used in this paper are summarized in Table 1.

2. Preliminary definitions

Throughout this paper, G will refer to a complex network with 
node set N and arc set A. We assume that G is connected, mean-
ing there is a path of arcs in A connecting any two nodes. Let 
N ≡ |N | be the number of nodes in G . The network B is a sub-
network of G if B is connected and B can be obtained from G by 
deleting nodes and arcs. For each positive integer s such that s ≥ 2, 
let B(s) be a collection of subnetworks (called boxes) of G satisfy-
ing two conditions: (i) each node in N belongs to exactly one sub-
network (i.e., to one box) in B(s), and (ii) the diameter of each box 
in B(s) is at most s − 1. (The diameter � of a network is defined 
by � ≡ max{ dist(x, y) | x, y ∈N }, where dist(x, y) is the length of 
the shortest path between nodes x and y, and where “≡” denotes 
a definition.) We call B(s) a covering of G of size s, or more sim-
ply, an s-covering. We do not consider B(s) for s = 1, since a box 
of diameter 0 contains only a single node. Define B(s) = |B(s)|, so 
B(s) is the number of boxes in B(s). The s-covering B(s) is min-
imal if B(s) is less than or equal to the number of boxes in any 
other s-covering. For s > �, the minimal s-covering B(s) consists 
of a single box which is G itself. The term “box counting” refers 
to computing a minimal s-covering for a range of values of s. In 

Table 1
Symbols and their definitions.

Symbol Definition

� network diameter

A(s) arithmetic mean of the box masses in B(s)

B(s) covering of G of size s

B(s) cardinality of B(s)

B j box in B(s)

dB box counting dimension

Dq generalized dimension of order q

Dq(L, U ) secant estimate of Dq

dI information dimension

G complex network

G(s) geometric mean of the box masses in B(s)

H(s) entropy of the distribution pj(s)

N number of nodes in G
N j(s) number of nodes in box B j ∈ B(s)

pj(s) probability of box B j ∈ B(s)

R
E E-dimensional Euclidean space

x(s) lexico minimal vector summarizing B(s)

Zq
(
B(s)

)
partition function value for the covering B(s)

Z(x,q) partition function value for the summary vector x

general, we cannot easily compute a minimal s-covering, but good 
heuristics are known (e.g., [5,12,19,24]).

Let B(s) be an s-covering of G . For B j ∈ B(s), define pj(s) ≡
N j(s)/N , where N j(s) is the number of nodes in B j . By the “mass” 
of a box B j , we mean the number of nodes in B j . For q ∈R, define

Zq
(
B(s)

) ≡
∑

B
j
∈B(s)

[pj(s)]q . (1)

We call Zq
(
B(s)

)
the partition function value for B(s). Following 

[23], we summarize B(s) by the point x(s) ∈ R
J , where J = B(s), 

where xj(s) = N j(s) for 1 ≤ j ≤ J , and where x1(s) ≥ x2(s) ≥ · · · ≥
xJ (s). We say “summarize” since x(s) does not specify all the infor-
mation in B(s); in particular, B(s) specifies exactly which nodes 
belong to each box, while x(s) specifies only the mass of each 
box. We use the notation x(s) = ∑

B(s) to mean that x(s) sum-
marizes the s-covering B(s) and that x1(s) ≥ x2(s) ≥ · · · ≥ xJ (s). 
For example, if N = 37, s = 3, and B(3) = 5 then we might have 
x(3) = ∑

B(3) for x(3) = (18, 7, 5, 5, 2). If x(s) = ∑
B(s) then each 

xj(s) is positive, since xj(s) is the mass of box B j .

Let x ∈ R
K for some positive integer K . Let right(x) ∈ R

K−1 be 
the point obtained by deleting the first component of x. For ex-
ample, if x = (18, 7, 5, 5, 2) then right(x) = (7, 5, 5, 2). Let u ∈ R

and v ∈ R be numbers. We say that u � v (in words, u is lex-
ico greater than or equal to v) if ordinary inequality holds, that 
is, u � v if u ≥ v . (We use lexico instead of the longer lexico-
graphically.) Now let x ∈ R

K and y ∈ R
K . We define lexico in-

equality recursively. We say that y � x if either (i) y1 > x1 or 
(ii) y1 = x1 and right(y) � right(x). Thus (9, 6, 5) � (8, 7, 5) and 
(9, 6, 7) � (9, 5, 8).

Definition 1. Let x(s) = ∑
B(s). Then x(s) is lexico minimal if 

(i) B(s) is a minimal s-covering and (ii) if B̃(s) is a minimal 
s-covering distinct from B(s) and x̃(s) = ∑

B̃(s) then
x̃(s) � x(s). �

It is proved in [23] that for each s there is a unique lexico min-
imal summary. Moreover, if x(s) = ∑

B(s) is lexico minimal then 
for all sufficiently large q and for any other minimal s-covering 
B̃(s) we have Zq

(
B(s)

) ≤ Zq
(
B̃(s)

)
. Since for q > 1 the partition 
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