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We study the spatiotemporal formation of patterns in a diffusive FitzHugh–Nagumo network where 
the effect of electromagnetic induction has been introduced in the standard mathematical model 
by using magnetic flux, and the modulation of magnetic flux on membrane potential is realized 
by using memristor coupling. We use the multi-scale expansion to show that the system equations 
can be reduced to a single differential-difference nonlinear equation. The linear stability analysis is 
performed and discussed with emphasis on the impact of magnetic flux. It is observed that the effect of 
memristor coupling importantly modifies the features of modulational instability. Our analytical results 
are supported by the numerical experiments, which reveal that the improved model can lead to nonlinear 
quasi-periodic spatiotemporal patterns with some features of synchronization. It is observed also the 
generation of pulses and rhythmics behaviors like breathing or swimming which are important in brain 
researches.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The complexity of the brain makes it the most important sys-
tem in nature. The brain is made up of a large number of neu-
rons grouped into functional ensembles generally called microcir-
cuits [1]. They have a striking capacity to produce a considerable 
variety of coordinated patterns in response to their surrounding 
changes or their behavioral needs. In fact, spiking neurons have 
attracted the interest because many studies consider this behav-
ior an essential component in biophysics and mathematics in-
formation processing in the nerve cell. Excitability is a common 
property of many physical and biological systems. As now well 
established, in excitable media nonlinear waves have a great im-
portance for a better understanding of some cooperative behavior 
including patterns formation and synchronization since such phe-
nomena are related to normal functioning and generation of some 
neural ailments [2–4]. In general, neuronal systems exemplify the 
properties of biologically excitable media, although relatively few 
investigations have been carried out on the initiation, propagation, 
and pathways of dynamic excitatory waves. The FitzHugh Nagumo 
(FHN) model is a generic model of excitability and oscillatory dy-
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namical behavior. The model has been introduced by FitzHugh [5]
with equivalent circuit by Nagumo et al. [6] is a generalization of 
the Van der Pol oscillator. The FHN mathematical model has been 
greatly contributing in nonlinear neurodynamics domain and has 
become prototype model for systems exhibiting excitability.

In the past years, mathematical and physical contributions de-
voted to neurological sciences have improved our understanding 
of pattern formation using the FHN mathematical model. Just to 
cite a few, simpler pulse solutions in the discrete FHN model have 
been constructed asymptotically [7–10]. Taking into account two 
different time constants, Panfilov and Hogeweg [11] modified the 
standard FHN model for excitable tissue and showed that a spi-
ral wave can break up into an irregular spatial pattern. Dimitry 
et al. [12] showed that particle-like behavior can lead to forma-
tion of complex periodic and chaotic fractal-like spatiotemporal 
wave patterns in modified FHN network. Malevanets and Kapral 
[13] showed that fully developed labyrinthine pattern can be ob-
served in a microscopic reaction model with a FHN mass action 
law. Very recently, Zhenga and Shena [14] showed that the FHN 
model has very rich dynamical behaviors, such as spotted, stripe 
and hexagon patterns.

However, the excitability property is much too complex and 
many factors should be considered as well. According to Faraday´s 
law of induction, the fluctuation or changes in action potentials in 
excitable cells (neurons) can generate magnetic field in the media; 
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in that sense, the excitability of neurons will be adjusted under 
feedback effect [15]. Albeit the satisfactory results reported in the 
above mentioned studies, the appropriate mechanism and the con-
ditions under which spatiotemporal patterns emerge and spread 
among coupled neurons under electromagnetic induction have not 
been investigated. Therefore, it is important to set more reliable 
FHN models, so that the effect of electromagnetic induction could 
be considered. This constitutes the strong motivation to this Let-
ter. It is well known that modulational instability (MI) is a process 
closely related to solitons and wave patterns formation in various 
physical settings, where amplitude and phase modulations tend 
to grow exponentially due to the simultaneous effects of nonlin-
earity and dispersion. We show in this work that the effect of 
electromagnetic induction can enhance spatiotemporal information 
through the activation of MI. The improved FHN network can gen-
erate rhythmics behaviors like breathing or swimming which are 
important in brain researches [1].

The rest of the Letter is organized as follows: in Section 2, we 
introduce the model along with the important mathematical de-
velopments and we make use of the semi-discrete approximation 
to show that the equations of the system can fully be described by 
a single differential-difference nonlinear equation. In Section 3, the 
MI of plane wave solution is performed and we discuss the possi-
bility of common regions of instability with emphasis of memristor 
coupling. In order to confirm our analytical predictions, we per-
form the numerical simulations from the generic equations of the 
model. Section 4 concludes the paper.

2. Model equation and asymptotic expansion

It is well known that the standard FHN model is described by 
two variables v(t) and w(t), which represent the trans-membrane 
potential and the slow variable for current, respectively. In this Let-
ter, we introduce the magnetic flux variable φ(t), which is used to 
describe the effect of electromagnetic induction. The equations for 
an improved FHN model for N = 400 identical neurons mutually 
coupled to their nearest neighbors through the gap junction is now 
made of three ordinary differential equations for the dimensionless 
variable v(t), w(t) and φ(t) as follows:

dvn

dt
= K (vn+1 − 2vn + vn−1) + vn(vn − a)(2 − vn)

− wn − k1ρ(φn)vn + Iext,

dwn

dt
=λ(vn − bwn),

dφn

dt
= vn − k2φn + φext,

(1)

with n = 1, 2, ..., N .
The parameter K is the coupling parameter between cells, 

while the parameter λ represents the ratio of the time scales for 
vn(t) and wn(t). The function ρ(φn) = α+3βφ2

n is the conductance 
developed from memristor [16,17] and used for memory associ-
ated with magnetic field. According to Faraday’s law of electro-
magnetic induction and description about memristor [18], the term 
k1ρ(φn)vn could be regarded as additive induction current on the 
membrane. φext is the external electromagnetic radiation which for 
simplicity is taken as a periodical function φext = A cos(2π f t). The 
ion currents of sodium, potassium contribute the membrane po-
tential and also the magnetic flux across the membrane; thus, a 
negative feedback term −k2φn has been introduced in the third 
equation of (1). Iext represents the external forcing current. The 
parameter values used in this work are: a = 0.3, b = 0.5, λ = 0.01, 
k2 = 1, α = 0.1 and β = 0.02. The parameters K , k1, Iext and φext

will be selected so to display formation of complex patterns of the 
action potential.

Nonlinear equations are, owing to their complexity, typically 
not accessible to an analytic approach. Sometimes, the analysis in-
volve the use of asymptotic expansions such as the multiple-scale 
expansion, the Fourier series expansion and the semi-discrete ap-
proximation, just to cite a few. In this Letter, we use the multiple 
scale analysis expansions, which implies that the first node of the 
network, i.e., n = 0, is excited at the natural frequency �0. Due 
to nonlinear effects, that naturally affect real systems, the natural 
frequency will deviate, with actual frequency � and wave num-
ber q, to become � = �0 + εμ and q = K + ε μ

V g
+ ε2C gμ

2 + ..., 

where 1
V g

= ∂q
∂�

is the group velocity and 2C g = ∂2q
∂�2 represents 

the group velocity dispersion. μ is a small deviation from the 
natural frequency �0. It is therefore clear that for ε = 0, the fre-
quency � reduces to the natural frequency �0 of the system. 
Equation (1) can be summarized in terms of the state vector 
Un(t) = {vn(t), wn(t), φn(t)}, whose unperturbed expressions can 
be taken in the generalized form

Un(t) =
∫

d�Û (�)ei(qn+�), (2)

where Û (�) = {v̂(�), ŵ(�), φ̂(�)}. With the expanded ω and q
along with change of variables τn = ε(t + n/V g) and ζn = ε2n
and the condition C g = 1, the generalized trial solutions take the 
form

Un(t) = A(n, t)U (ζn, τn), (3)

where A(n, t) = ei(qn+�t) . The method introduces a new lattice 
number m to support a large grid [19]. It follows that for a given 
lattice number n, only the set of lattice points ..., n − N, n, n + N, ...
can be indexed in terms of the slow variable m as {..., (n − N) →
(m − 1), n → m, (n + N) → (m + 1)..., }, where ε2 = 1/N is as-
sumed due to highly pronounced discreteness effects. In so do-
ing, the slow modulation S(ζn, τn) of the plane wave A(n, t) can 
be replaced by the functions U (m, τ ), with τ = τn , and one can 
easily make use of the Fourier series in power of the parame-
ter ε

Un(t) =
∞∑

p=1

εp
p∑

l=−p

Ul
p(n, t). (4)

From (4), we have U−l
p (m, τ ) = (Ul

p(m, τ ))∗ . Inserting the above 
solutions into Eq. (1) leads to a set of coupled equations to be 
solved at different orders of the small parameter ε , with the cor-
responding harmonics l. For the leading order (1, l), with l = 0, we 
obtain the solution

η0
1(m, τ ) = ψ0

1 (m, τ ) = φ0
1(m, τ ) = 0. (5)

For l = 1 the dispersion relation

[
(i� − 2K (cos(q) − 1) + 2a + αk1)(i� + λb) + λ

]
(i� + k2) = 0

(6)

should be satisfied for the system to admit non-trivial solutions in 
the form

η1
1(m, τ ) = η(m, τ ),

ψ1
1 (m, τ ) = λ

i� + λb
η(m, τ ),

φ1
1(m, τ ) = η(m, τ )

(i� + k2)
.

(7)
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