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Symplectic quantum mechanics (SMQ) makes possible to derive the Wigner function without the use of 
the Liouville–von Neumann equation. In this formulation of the quantum theory the Galilei Lie algebra 
is constructed using the Weyl (or star) product with Q̂ = q� = q + ih̄

2 ∂p, P̂ = p� = p − ih̄
2 ∂q , and the 

Schrödinger equation is rewritten in phase space; in consequence physical applications involving the 
Coulomb potential present some specific difficulties. Within this context, in order to treat the Schrödinger 
equation in phase space, a procedure based on the Levi-Civita (or Bohlin) transformation is presented 
and applied to two-dimensional (2D) hydrogen atom. Amplitudes of probability in phase space and the 
correspondent Wigner quasi-distribution functions are derived and discussed.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

There are several alternative ways in order to quantize a mi-
cro physical system. One of them refers to the quantum revolu-
tion in the twenties of the last century performed by Schrödinger, 
Heisenberg, Dirac and others, in this standard way we use oper-
ators in Hilbert space. Another way is the path integrals, which 
were conceived by Dirac [1] and formulated by Feynman in 1948 
[2,3]. A third way is the formulation of quantum mechanics on 
phase space (also known as the Moyal quantization or the de-
formation quantization) which is grounded on Wigner’s quasi-
distribution function [4] and Weyl’s correspondence between ordi-
nary c-number functions in phase space and quantum-mechanical 
operators in Hilbert space [5,6]. At the ending of the 1970s Bayen 
et al. [7,8] laid the groundwork for an alternative description of 
the phase space formulation of quantum mechanics. The roots of 
this work are found in earlier works of Weyl [5,6], Wigner [4], 
Groenewold [9], Moyal [10] and Berezin [11–13] on the physical 
side and of Gerstenhaber and Schack [14–18] on the mathemat-
ical side. Since then, many efforts have been made in order to 
develop the quantum mechanics on phase space, for a comprehen-
sive treatment of the subject the reader may consult Refs. [19–21]. 
An extensive collection of important papers and list of references 
can be found in Refs. [22,23].
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The phase space representation of quantum mechanics is less 
well known but is useful in many branches of physics, for exam-
ple, in quantum optics [24], nuclear physics [25], atomic physics 
[26–28], condensed matter [29–31], field theory [32–37], M-theory 
[38–40], noncommutative geometry [41,42] and the noncommuta-
tive field theory models [43–48].

The concept of phase space comes naturally from the Hamil-
tonian formulation of classical mechanics and plays an important 
role in the relation between quantum and classical mechanics, i.e. 
the quantum-classical transition. The quantum mechanics on phase 
space seems to be a result of a generalization of classical Hamil-
tonian mechanics, in such a way that the phase space formulation 
of quantum mechanics should smoothly reduce to the formulation 
of classical Hamiltonian mechanics as the Planck constant h̄ goes 
to 0, that is h̄ parameterizes the link between classical and quan-
tum mechanics. The interpretation of phase space representation 
of quantum mechanics is given by considering the Wigner func-
tion f w (q, p), which both the position and momentum variables 
are c-numbers. A basic advantage of this representation is that it 
is possible to perform canonical transformations, just as in classical 
Hamiltonian mechanics [21].

The stationary Wigner phase space distribution function
f w (q, p) in terms of the wave function ψ(q) of the usual time-
independent Schrödinger equation Ĥ

(
q̂, p̂

)
ψ (q) = Eψ (q), is de-

fined through the following expression [4,19]

f w(q, p) =
∫

e
ipξ
h̄ ψ†(q + ξ

2
)ψ(q − ξ

2
)dξ, (1)
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where all integral runs from −∞ to −∞. The Wigner function is 
identified as a quasi-distribution in the sense that f w (q, p), where 
(q, p) are the coordinates of a phase space manifold �, is real but 
not positive definite, and as such cannot be interpreted as prob-
ability. However, the integrals ρ (q) = ∫

f w (q, p)dp and ρ (p) =∫
f w (q, p)dq are (true) distribution functions. In the Wigner for-

malism, each operator, say A, defined in the Hilbert space, H, is 
associated with a function, say aw (q, p), in �. Then there is an 
application �w : A �→ aw (q, p), such that, the associative algebra 
of operators defined in H turns out to be an associative (but not 
commutative) algebra in �, given by �w : AB �→ aw � bw , where 
the star-product � is defined by

aw � bw = aw (q, p)exp

[
ih̄

2

(←−
∂

∂q

−→
∂

∂ p
−

←−
∂

∂ p

−→
∂

∂q

)]
bw (q, p) , (2)

and the arrows over the vector fields ∂q, ∂p denote that a given 
vector field acts only the function standing on the left or on the 
right side of the vector field. Studies of the representation of the 
Galilei group in a manifold with phase space content have been 
developed since long ago [49–56]. This type of representation, 
called symplectic unitary representation, has been used by several 
authors [5,10,19,21]; in particular Oliveira et al. [57] in order to 
explore the algebraic structure of the Wigner formalism have con-
sidered unitary representations based on operators of the type aw�

and shown that the operators

Q̂ = q� = q + ih̄

2
∂p , P̂ = p� = p − ih̄

2
∂q , (3)

K̂ = k� = mq � −tp� = mQ̂ − t P̂ , (4)

L̂i = εi jk Q̂ j P̂k = εi jkq j pk − ih̄

2
εi jkq j

∂

∂qk

+ ih̄

2
εi jk p j

∂

∂qk
+ h̄2

4
εi jk

∂2

∂q j∂ pk
, (5)

and

Ĥ = h� = P̂ 2

2m
= 1

2m

3∑
i=1

P̂ 2
i

= 1

2m

3∑
i=1

(
pi − ih̄

2

∂

∂qi

)2

, (6)

satisfy the Lie algebra for the Galilean symmetry with a central 
extension characterized by m. Furthermore Oliveira et al. have in-
troduced a pair of multiplicative operators Q (coordinates) and 
P (momenta) which allows us to endow H (�), the Hilbert space 
over �, with basis |q, p〉 in which Q and P are diagonal opera-
tors. It follows that in this formulation, called Symplectic Quantum 
Mechanics (SQM), the time-independent Schrödinger equation in 
phase space is written as

H
(

Q̂ , P̂
)

 (q, p) = E
 (q, p) . (7)

Here H
(

Q̂ , P̂
) = P̂ 2

2m + V
(

Q̂
)

with P̂ = p�, Q̂ = q�, and the Wigner 
function is defined by f w = 
 (q, p) �
† (q, p). Eq. (7) is symplec-
tically covariant [58,59] and for a complete understanding of this 
equation the reader may consult Refs. [57–61]. This approach pro-
vides satisfactory interpretation for numerous aspects of the phase 
space quantum theory and, although associated with the Wigner 
formalism, has a Hamiltonian, not a Liouvillian, operator as gener-
ator of time translation; from Eq. (7) it follows, for example, that 
H

(
P̂ , Q̂

)

 � 
† = E
 � 
† or H

(
P̂ , Q̂

)
f w = E f w . SQM has been 

applied to some quantum systems: states of linear oscillator, non-
linear oscillator [57], one dimensional hydrogen atom [62] have 

been obtained in terms of amplitudes of probability in phase space 

 (q, p). However, for two and three dimensional Coulomb poten-
tial there are some specific difficulties and it is not known the cor-
respondent 
 (q, p). In this work in order to solve the Schrödinger 
equation (7) for the 2D hydrogen atom we present a procedure 
based on the Levi-Civita (or Bohlin) transformation [63–65].

2. 2D hydrogen atom

For the 2D hydrogen atom, the potential energy is V c (q) =
−e2q−1, with q =

√
q2

1 + q2
2. There is a great interest in this system 

due to its applications in condensed matter physics [66–69] and 
in atomic and molecular physics [70], in particular, in the branch 
of atomic spectroscopy, the 2D hydrogen atom was regarded as a 
simplified model of the ionization process of the highly excited 
3D hydrogen atom by circular-polarized microwaves [70]. For sim-
plicity of presentation, we suppose units are selected in such a 
way that both the charge e and the mass m have unit value. With 
this choice of units, the corresponding classical Hamiltonian for the 
system is

Hc = (2−1 p2 − kq−1), (8)

where p2 = p2
1 + p2

2 and k is a positive constant. In the SQM pic-
ture for the Hc (q, p) we have

H
(

Q̂ , P̂
) = 1

2

2∑
i=1

(
pi − i

2

∂

∂qi

)2

+ V (q1�,q2�) (9)

and in consequence it is difficult to determine solutions of the 
Schrödinger equation (7). To solve this problem we propose a pro-
cedure where the connection between the Coulomb problem in a 
plane in parabolic coordinates and the 2D harmonic oscillator in 
Cartesian coordinates is used [71]. Specifically, with our notation, 
let now U = R

2, X =R
2, U∗ =U \ {0}, X∗ = X \ {0} and

T (u) := 1

2

(
u1 −u2
u2 u1

)
, u ∈ U

∗. (10)

The Levi-Civita (or Bohlin) transformation [63–65] is given by f :
U

∗ → X
∗ , x = f (u) = T (u)u. The columns of T (u) form analytic 

orthogonal frame for U∗ . A theorem of Hurwitz [72,73] states that 
square matrix T (u) satisfies the three properties of which can be 
shown by straightforward calculations: T (u) is orthogonal for all 
u 	= 0, T (u) is linear in u, and one of the columns of T (u) is u. 
Therefore we have the transformation

x = T (u)u =
(

1
2

(
u2

1 − u2
2

)
u1u2

)
=

(
q1
q2

)
, (11)

with q = u2, q =
√

q2
1 + q2

2, and u2 = u2
1 + u2

2. Thus according to 
the Levi-Civita transformation [74,75] the plan (u1, u2) is the dou-
ble covering of the plan (q1,q2). Therefore, the points (u1, u2)

and (−u1,−u2) represent the same point of the plane and the 
wavefunctions must satisfy ψ (u1, u2) = ψ (−u1,−u2). We note 
here the rather obvious fact that the Levi-Civita mapping, which 
is simply a transformation to parabolic coordinates, carries the 
flat q space into a flat u space. The “inverse” transformation is 

given by u1 = ± 
[

(q1+2q)
4

] 1
2

and u2 = q2
u1

, giving the parabolic co-

ordinates ui in terms of the Cartesian coordinates. By develop-
ing dqtdq = 4dut T t T du, we obtain dq1

2 + dq2
2 = q 

(
du1

2 + du2
2
)
. 

The reader will verify that ∂
∂u = 2T t ∂

∂q , this can be inverted to 
give ∂

∂q = 2
q T ∂

∂u . Applied to classical Hamiltonian (8), Hc in terms 
of parabolic coordinates u1, u2 defined by q1 = 1

2

(
u2

1 − u2
2

)
and 

q2 = u1u2 is
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