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Symplectic quantum mechanics (SMQ) makes possible to derive the Wigner function without the use of
the Liouville-von Neumann equation. In this formulation of the quantum theory the Galilei Lie algebra
is constructed using the Weyl (or star) product with 0= qgxr=q+ %Bp, p= px=p— %Bq, and the
Schrodinger equation is rewritten in phase space; in consequence physical applications involving the
Coulomb potential present some specific difficulties. Within this context, in order to treat the Schrodinger

equation in phase space, a procedure based on the Levi-Civita (or Bohlin) transformation is presented
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and applied to two-dimensional (2D) hydrogen atom. Amplitudes of probability in phase space and the
correspondent Wigner quasi-distribution functions are derived and discussed.
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1. Introduction

There are several alternative ways in order to quantize a mi-
cro physical system. One of them refers to the quantum revolu-
tion in the twenties of the last century performed by Schrodinger,
Heisenberg, Dirac and others, in this standard way we use oper-
ators in Hilbert space. Another way is the path integrals, which
were conceived by Dirac [1] and formulated by Feynman in 1948
[2,3]. A third way is the formulation of quantum mechanics on
phase space (also known as the Moyal quantization or the de-
formation quantization) which is grounded on Wigner's quasi-
distribution function [4] and Weyl’s correspondence between ordi-
nary c-number functions in phase space and quantum-mechanical
operators in Hilbert space [5,6]. At the ending of the 1970s Bayen
et al. [7,8] laid the groundwork for an alternative description of
the phase space formulation of quantum mechanics. The roots of
this work are found in earlier works of Weyl [5,6], Wigner [4],
Groenewold [9], Moyal [10] and Berezin [11-13] on the physical
side and of Gerstenhaber and Schack [14-18] on the mathemat-
ical side. Since then, many efforts have been made in order to
develop the quantum mechanics on phase space, for a comprehen-
sive treatment of the subject the reader may consult Refs. [19-21].
An extensive collection of important papers and list of references
can be found in Refs. [22,23].
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The phase space representation of quantum mechanics is less
well known but is useful in many branches of physics, for exam-
ple, in quantum optics [24], nuclear physics [25], atomic physics
[26-28], condensed matter [29-31], field theory [32-37], M-theory
[38-40], noncommutative geometry [41,42] and the noncommuta-
tive field theory models [43-48].

The concept of phase space comes naturally from the Hamil-
tonian formulation of classical mechanics and plays an important
role in the relation between quantum and classical mechanics, i.e.
the quantum-classical transition. The quantum mechanics on phase
space seems to be a result of a generalization of classical Hamil-
tonian mechanics, in such a way that the phase space formulation
of quantum mechanics should smoothly reduce to the formulation
of classical Hamiltonian mechanics as the Planck constant fi goes
to O, that is i parameterizes the link between classical and quan-
tum mechanics. The interpretation of phase space representation
of quantum mechanics is given by considering the Wigner func-
tion fy (q, p), which both the position and momentum variables
are c-numbers. A basic advantage of this representation is that it
is possible to perform canonical transformations, just as in classical
Hamiltonian mechanics [21].

The stationary Wigner phase space distribution function
fw (g, p) in terms of the wave function v (q) of the usual time-
independent Schrédinger equation H (4, §) v (q) = Ev (q), is de-
fined through the following expression [4,19]

§ §

fw@.p) :/ﬁ via+ -3, (1)


http://dx.doi.org/10.1016/j.physleta.2017.02.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:pedrodesiqueiracampos@yahoo.com.br
mailto:mgraca@ufba.br
mailto:jdavid@fis.unb.br
http://dx.doi.org/10.1016/j.physleta.2017.02.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2017.02.005&domain=pdf

1130 P. Campos et al. / Physics Letters A 381 (2017) 1129-1133

where all integral runs from —oco to —oo. The Wigner function is
identified as a quasi-distribution in the sense that f,, (q, p), where
(q, p) are the coordinates of a phase space manifold I', is real but
not positive definite, and as such cannot be interpreted as prob-
ability. However, the integrals p (q) = [ fw (g, p)dp and p(p) =
[ fw(q, p)dq are (true) distribution functions. In the Wigner for-
malism, each operator, say A, defined in the Hilbert space, H, is
associated with a function, say ay (q, p), in T'. Then there is an
application Q4 : A — ay (q, p), such that, the associative algebra
of operators defined in H turns out to be an associative (but not
commutative) algebra in I', given by @, : AB — ay x by, where
the star-product * is defined by

—

ih (98 9 9
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and the arrows over the vector fields 94, 3, denote that a given
vector field acts only the function standing on the left or on the
right side of the vector field. Studies of the representation of the
Galilei group in a manifold with phase space content have been
developed since long ago [49-56]. This type of representation,
called symplectic unitary representation, has been used by several
authors [5,10,19,21]; in particular Oliveira et al. [57] in order to
explore the algebraic structure of the Wigner formalism have con-
sidered unitary representations based on operators of the type a,,*
and shown that the operators
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satisfy the Lie algebra for the Galilean symmetry with a central
extension characterized by m. Furthermore Oliveira et al. have in-
troduced a pair of multiplicative operators Q (coordinates) and
P (momenta) which allows us to endow H (T), the Hilbert space
over I', with basis |q, p) in which Q and P are diagonal opera-
tors. It follows that in this formulation, called Symplectic Quantum
Mechanics (SQM), the time-independent Schrodinger equation in
phase space is written as

H(Q.P)¥(q.p)=EV¥(q.p). (7)

Here H (@ 75) = % +V (@) with P = p*, Q = g, and the Wigner
function is defined by f,, =¥ (g, p) * W' (g, p). Eq. (7) is symplec-
tically covariant [58,59] and for a complete understanding of this
equation the reader may consult Refs. [57-61]. This approach pro-
vides satisfactory interpretation for numerous aspects of the phase
space quantum theory and, although associated with the Wigner
formalism, has a Hamiltonian, not a Liouvillian, operator as gener-
ator of time translation; from Eq. (7) it follows, for example, that
H(P,Q)¥ Wi =Ew ¥’ or H(P,Q) fw = Efw. SQM has been
applied to some quantum systems: states of linear oscillator, non-
linear oscillator [57], one dimensional hydrogen atom [62] have

been obtained in terms of amplitudes of probability in phase space
W (q, p). However, for two and three dimensional Coulomb poten-
tial there are some specific difficulties and it is not known the cor-
respondent W (g, p). In this work in order to solve the Schrédinger
equation (7) for the 2D hydrogen atom we present a procedure
based on the Levi-Civita (or Bohlin) transformation [63-65].

2. 2D hydrogen atom

For the 2D hydrogen atom, the potential energy is V.(q) =

—e?q~!, with ¢ = ,/q3 + q3. There is a great interest in this system
due to its applications in condensed matter physics [66-69] and
in atomic and molecular physics [70], in particular, in the branch
of atomic spectroscopy, the 2D hydrogen atom was regarded as a
simplified model of the ionization process of the highly excited
3D hydrogen atom by circular-polarized microwaves [70]. For sim-
plicity of presentation, we suppose units are selected in such a
way that both the charge e and the mass m have unit value. With
this choice of units, the corresponding classical Hamiltonian for the
system is

He= @ 'p? —kq™h, (8)

where p? = p? + p3 and k is a positive constant. In the SQM pic-
ture for the H. (q, p) we have

2

1 i 9)\°
H(Q’P)_2§<p' 28qi> + V (q1*, q2%) 9)
and in consequence it is difficult to determine solutions of the
Schrodinger equation (7). To solve this problem we propose a pro-
cedure where the connection between the Coulomb problem in a
plane in parabolic coordinates and the 2D harmonic oscillator in
Cartesian coordinates is used [71]. Specifically, with our notation,
let now U=R?, X=R?, U*=T\ {0}, X* =X\ {0} and

T =+ (“1 _”2>, ueU* (10)

2 \Uz2 U

The Levi-Civita (or Bohlin) transformation [63-65] is given by f :
U* - X*, x= f(u) = T(u)u. The columns of T(u) form analytic
orthogonal frame for U*. A theorem of Hurwitz [72,73] states that
square matrix T (u) satisfies the three properties of which can be
shown by straightforward calculations: T (u) is orthogonal for all
u=#0, T (u) is linear in u, and one of the columns of T (u) is u.
Therefore we have the transformation

x=T(u)u=<%(lﬁ];2u%))=(3;), (11)

with g = u?, ¢ =,/q? + ¢, and u? = u? + u3. Thus according to
the Levi-Civita transformation [74,75] the plan (uq, uy) is the dou-
ble covering of the plan (qi,q). Therefore, the points (u1,uy)
and (—uq, —uy) represent the same point of the plane and the
wavefunctions must satisfy ¥ (uq,u2) = ¥ (—uq, —u2). We note
here the rather obvious fact that the Levi-Civita mapping, which
is simply a transformation to parabolic coordinates, carries the
flat g space into a flat u space. The “inverse” transformation is
1

given by uy =+ [M]Z and up = g—f giving the parabolic co-
ordinates u; in terms of the Cartesian coordinates. By develop-
ing dq'dg = 4du'T'Tdu, we obtain dqi? + dg2? = q (du1? + du,?).
The reader will verify that = = 2Tf%, this can be inverted to
give 3% = %T%. Applied to classical Hamiltonian (8), H¢ in terms
of parabolic coordinates uq,u; defined by q; = %(u% —u%) and
2 =uquy is
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