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The shallow-water equations for two-dimensional hydrostatic flow over a bottom bathymetry b(x) are

ht + (uh)x = 0,

ut + (
gh + u2/2 + gb

)
x = 0.

It is shown that the combination of discontinuous free-surface solutions and bottom step transitions 
naturally lead to singular solutions featuring Dirac delta distributions. These singular solutions feature a 
Rankine–Hugoniot deficit, and can readily be understood as generalized weak solutions in the variational 
context, such as defined in [14,23]. Complex-valued approximations which become real-valued in the 
distributional limit are shown to extend the range of possible singular solutions. The method of complex-
valued weak asymptotics [23,24] is used to provide a firm link between the Rankine–Hugoniot deficit and 
the singular parts of the weak solutions. The interaction of a surface bore (traveling hydraulic jump) with 
a bottom step is studied, and admissible solutions are found.

© 2017 Published by Elsevier B.V.

1. Introduction

The standard theory of hyperbolic conservation laws in one spa-
tial dimension can be applied to systems which are strictly hyper-
bolic and genuinely nonlinear. If initial data are given which have 
small enough total variation, then it can be shown that there is a 
solution which exists for all times [17,19,35]. This solution will in 
general be discontinuous, featuring a number of jumps. However, if 
one of the above hypotheses is not satisfied, the initial-value prob-
lem cannot in general be resolved (see e.g. [4–6,9,12,29,31,36]) and 
further restrictions on the data need to be introduced, such as for 
example in [36]. In fact, in some cases, even the Riemann problem 
cannot be solved.

Starting with the work reported on in [27], existence of so-
lutions was shown to be possible if the space of solutions was 
extended to include Radon measures. In particular, such non-
standard solutions were shown to contain Dirac δ-distributions 
attached to the location of certain discontinuities. As was shown 
in [26], the incorporation of such δ-shocks is equivalent to relaxing 
one or more of the required Rankine–Hugoniot conditions for clas-
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sical shocks, and it may be shown that the strength of the Dirac 
δ-distribution associated to a certain shock is a precise measure of 
the deficit in the Rankine–Hugoniot conditions which are required 
to obtain a solution.

In the present work, we consider the shallow-water system, and 
show how δ-shocks arise naturally if this theory is to describe the 
physics of the underlying problem adequately. Indeed, unlike the 
situation from [24] where the δ-distribution was adjoined to the 
surface excursion, here we shall see that δ-naturally appears as 
part of the velocity as a measure of the Rankine–Hugoniot deficit. 
Alternative approaches for physical explanations of the appearance 
of delta functions and Rankine–Hugoniot deficits in the context of 
shallow-water dynamics were given in [15], where a localized jet is 
considered, and [21], where mixing closures for a two-layer system 
were proposed.

The shallow-water system describes the flow of an inviscid fluid 
in a long channel of small uniform width, and is used as a standard 
model in the field of hydraulics which is fundamental for example 
in the study of river bores and storm surges in rivers and channels 
[19,37]. If it can be assumed that the bottom is flat (such as in a 
laboratory situation), the system is usually written in the form

∂th + ∂x (uh) = 0, (mass conservation), (1.1)

∂t(uh) + ∂x

(
u2h + g h2

2

)
= 0, (momentum balance), (1.2)
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Fig. 1. Left panel: Surface profile of a traveling hydraulic jump (undular bore). Right panel: shallow-water approximation.

Fig. 2. Left panel: Surface profile over a bottom transition. Right panel: shallow-water approximation.

where h denotes the total flow depth, u represents an average hor-
izontal velocity, and g is the gravitational constant. For smooth 
solutions, an equivalent system is

∂th + ∂x (uh) = 0, (1.3)

∂t u + ∂x

(
u2

2 + gh
)

= 0, (1.4)

and it is immediately clear that mass and momentum conserva-
tion in discontinuous solutions lead to a Rankine–Hugoniot deficit 
in (1.4). One might conclude that it would therefore be best to 
avoid the system (1.3)–(1.4) in favor of the system (1.1)–(1.2). The 
theory for this system is well developed, and both the initial-value 
problem and the Riemann problem can be solved [19]. The conser-
vation of energy is formulated as

∂t

(
h u2

2 + g h2

2

)
+ ∂x

(
guh2 + h u3

2

)
= 0 (1.5)

and this then serves as a mathematical entropy.
On the other hand, in many practical situations, the assumption 

of a flat bottom is too restrictive. If an uneven bed is introduced, 
the equations take the form

∂th + ∂x (uh) = 0 (mass conservation) (1.6)

∂t u + ∂x

(
gh + u2

2

)
= −gbx (1.7)

∂t(uh) + ∂x

(
u2h + g h2

2

)
= −ghbx (momentum balance) (1.8)

∂t

(
h u2

2 + g h2

2 + bh
)

+ ∂x

(
guh(h + b) + h u3

2

)
= 0

(energy balance) (1.9)

In this system, the function b(x) measures the rise of the bed 
above a certain reference level at z = 0. The function h(x, t) mea-
sures the flow depth of the fluid, so that b(x) + h(x, t) measures 
the position of the free surface relative to the reference point z = 0
(see Fig. 1 and Fig. 2).

Again, for discontinuous solutions, mass and momentum con-
servation are to be satisfied, so that (1.7) and the energy equa-
tion (1.9) will feature a Rankine–Hugoniot deficit. In the case of a 
shock over a bottom step, momentum is not conserved because of 
the lateral pressure force appearing in (1.8), and in this case en-
ergy conservation needs to be specified. Therefore, in this case a 
Rankine–Hugoniot deficit will be introduced in (1.8).

In this paper we will address the relatively simple situation 
of a flow of a shock wave over a bottom step. The shock wave 

is governed by the Rankine–Hugoniot conditions originating from 
mass and momentum conservation, i.e. by (1.6) and (1.8). On the 
other hand, as explained above, a discontinuity over a bottom step 
is governed by the Rankine–Hugoniot conditions originating from 
mass and energy conservation, i.e. by (1.6) and (1.9). Thus it is 
plain that it is not possible to resolve the underlying physical prob-
lem with the use of only two governing equations. If the goal is 
to maintain the classical modeling approach of describing a situ-
ation with a certain fixed set of equations so that the number of 
equations and unknowns is the same, it is necessary to allow for 
Rankine–Hugoniot deficits and the corresponding incorporation of 
singular delta shocks.

Thus in order to salvage the classical modeling approach, we 
propose the following procedure. Use the system (1.6)–(1.7) as the 
system to be solved, and use the corresponding Rankine–Hugoniot 
conditions for momentum or energy conservation in the appro-
priate places. Since these can be made explicit via delta-shock 
waves, the system is self-sufficient. For further study, the system 
(1.6)–(1.7) can be cast in conservative form by writing

∂th + ∂x(uh) = 0,

∂t u + ∂x

(
gh + u2

2 + gb
)

= 0.

}
(1.10)

The plan of the present paper is as follows. In Section 2, sur-
face discontinuities over a flat bottom are studied, and it is shown 
that if these discontinuous solutions satisfy mass and momentum 
conservation, and the required energy loss, then the total head 

1
2g u2 + h cannot be conserved. Thus a Rankine–Hugoniot deficit 
is needed in the second equation in (1.10). The solution is verified 
both in the weak asymptotic context, and in the weak variational 
context. In Section 3, bottom step transitions are studied. In Sec-
tion 4, the interaction of a discontinuous moving surface profile 
with a bottom step is investigated.

2. Surface discontinuities

In this section, we briefly review the theory surrounding dis-
continuous solutions of the shallow-water system, and we show 
that an admissible weak solution conserving mass and momentum, 
and dissipating mechanical energy must give rise to a Rankine–
Hugoniot deficit for the conservation equation for the total head. 
Then, it is described how such a singular solution can be under-
stood as a delta shock wave in the framework of the weak asymp-
totic method, and in the generalized variational framework.
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