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In this paper, a double distribution lattice Boltzmann model for axisymmetric thermal flow is proposed. 
In the model, the flow field is solved by a multi-relaxation-time lattice Boltzmann scheme while 
the temperature field by a newly proposed lattice-kinetic-based Boltzmann scheme. Chapman–Enskog 
analysis demonstrates that the axisymmetric energy equation in the cylindrical coordinate system can be 
recovered by the present lattice-kinetic-based Boltzmann scheme for temperature field. Numerical tests, 
including the thermal Hagen–Poiseuille flow and natural convection in a vertical annulus, have been 
carried out, and the results predicted by the present model agree well with the existing numerical data. 
Furthermore, the present model shows better numerical stability than the existing model.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Axisymmetric thermal flows are frequently encountered in in-
dustry, such as flow and heat transfer in pipes, turbines, solar 
energy equipment, etc. It is of substantial importance to under-
stand the mechanism of the flows and heat transfers phenomena 
in such kind of applications. In the past few decades, lattice Boltz-
mann (LB) method has been evolving into a powerful numerical 
method to study flows and heat transfers [1–5]. Compared with 
the traditional computational fluid dynamics (CFD) method based 
on the macroscopic continuum equations, the LB method has 
many notable merits, such as the mesoscopic kinetic background, 
easy boundary treatment and inherently parallelizable computa-
tion property.

In the past few decades, many LB models for axisymmetric 
flows have been proposed [6–16]. Most of these LB models are 
the lattice Bhatnagar–Gross–Krook (LBGK) models, which employ 
a single relaxation time (SRT). As a matter of fact, the LBGK mod-
els have been well accepted due to their extreme simplicity [3–5]. 
However, one of the most well-known criticism on these LBGK 
models for flow field is the numerical instability at moderately 
low viscosity. A remedy that improves the numerical stability is 
employing a multiple relaxation time (MRT) instead of a single 
one [17–19]. By separating the relaxation rates of the hydrodynam-
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ics and kinetic moments, the numerical stability can be effectively 
enhanced. Compared to the studies that focused on the LBGK for 
axisymmetric flow, there are very few studies on the MRT model 
of the axisymmetric flow currently. To bridge this gap, Wang et al. 
[15] and Li et al. [16] proposed MRT LB models for such flow, and 
much better numerical stability are acquired by employing the col-
lision matrix instead of a single collision operator.

The present MRT LB model for the flow field offers tunable pa-
rameters those help to improve the numerical stability against the 
LBGK model [15,16]. However, this is not the case for the currently 
available MRT LB model for the temperature field which employing 
a D2Q5 discrete velocities set. There have been several LB models 
for the axisymmetric thermal flows [20–23], some of which em-
ploy the SRT collision [20–22] while others take the MRT collision 
[23]. To the best knowledge of the authors, the present D2Q5 MRT 
LB models for the temperature field (both in the Cartesian and 
cylindrical coordinates) are numerical solvers which provide the 
potential for: (1) thermal flows with anisotropic diffusion cases 
[23,24]; (2) boundary treatment as bounce-back boundary condi-
tion is used [25,26], instead of providing a way that improves the 
numerical stability at low thermal diffusivity. However, in many 
applications with isotropic diffusion cases, the non-equilibrium ex-
trapolation boundary treatment [27] is employed due to its sim-
plicity, second-order accuracy, capability for different boundary 
conditions, and good robustness, which renders the D2Q5 MRT 
LB model for the temperature field futile. So it is reasonable to 
develop LB model that improves the numerical stability at low 
thermal diffusivity for these cases.
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In 2001, Inamuro [28] proposed a lattice kinetic scheme (LKS) 
for incompressible fluid flow with heat transfer. By adding a stress-
tensor-related/temperature-related term in the equilibrium distri-
bution function, a relaxation parameter of the stress tensor/tem-
perature is introduced to make the dimensionless relaxation time 
adjustable, hence the stability of the LB model is expected to be 
improved. Later, this LKS scheme is extended to the LBGK mod-
els for multiphase flows [29,30], non-Newtonian fluid flows [31,
32], incompressible flows and convection diffusion equations [33]
and thermal flows in porous media at the representative elemen-
tary volume (REV) scale [34]. It is worth noting that in some of 
the literature [28,29,31], the parallel characteristic of the standard 
LBM is spoiled since the stress tensor (or the temperature) in the 
added term is calculated using a finite-difference scheme, while 
in some other related literature [30,32–34], a localized scheme for 
the stress tensor (or the temperature) is employed to retain the 
intrinsic merit of the standard LBM.

In this letter, based on the work of Ref. [22], a lattice Boltz-
mann scheme for axisymmetric temperature field is proposed and 
coupled with the existing MRT LB model for axisymmetric flow 
field. In the proposed model, the idea of the LKS is employed, and 
a correction term is introduced to keep the dimensionless relax-
ation time for the temperature field in a proper range, thus better 
numerical stability is expected. The rest of the paper is arranged 
as follows: In Section 2, the macroscopic governing equations of 
the axisymmetric thermal flow, as well as an MRT LB scheme for 
velocity field are introduced. Then a lattice-kinetic-based LB model 
for temperature field is proposed. Boundary treatment of the LKS-
based LB model is provided in Section 3. In Section 4, some numer-
ical tests are carried out, and finally a brief conclusion is presented 
in Section 5.

2. Lattice Boltzmann model for axisymmetric thermal flow

2.1. Macroscopic governing equations

The governing equations of incompressible axisymmetric ther-
mal flow are [12,22]:
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where r and x denote the radial and axial directions, respectively. 
ux and ur are the axial and radial velocities, respectively. T is the 
temperature, ρ the density, μ the dynamic viscosity, and k is the 
thermal diffusivity. ax and ar are the external forces in the axial 
and radial directions, respectively. And
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r
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(5)

for any variables ϕ .

2.2. Multi-relaxation-time lattice Boltzmann model for flow field

According to Ref. [16], the evolution equation for the distribu-
tion function can be expressed as follows:

f i(x + eiδt, t + δt) − f i(x, t) = −Siγ
(

fγ − f eq
γ

)
+ δt

(
δiγ − Siγ

2

)
Fγ

(6)

where f i(x, t) is the density distribution function at the location x
and time t , Siγ the component of the collision matrix S given by 
S = diag(s0, s1, s2, s3, s4, s5, s6, s7)

−1, δiγ the Kronecker delta func-
tion, ei the discrete velocity specified by the standard D2Q9 lattice, 
δt the time step. f eq

i (x, t) is the equilibrium distribution function 
given by [16]

f eq
i = rρwi

[
1 + ei · u

c2
s

+ (ei · u)2

2c4
s

− u2

2c2
s

]
(7)

where r is the radius, ρ the density, wi the weight coefficient 
given by w0 = 4/9, wi = 1/9 for i = 1 − 4, and wi = 1/36 for 
i = 5 − 8. cs = c/

√
3 is the sound speed, in which c is the lattice 

speed defined by c = δx/δt with δx the lattice space. M is transfor-
mation matrix given by [16,18]:

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Using the transformation matrix, the moments can be con-

structed by mapping the discrete distribution functions in the ve-
locity space onto the moments space, which gives

m = Mf = r(ρ, e, ε, jx,qx, jr,qr, pxx, pxr)
T (8)

where f = ( f0, f1, f2, f3, f4, f5, f6, f7, f8)
T , e is the total energy, 

ε related to the energy square, jx and jr the components of the 
momentum J = ( jx, jr) = ρu, qx and qr related to energy flux, and 
pxx and pxr correspond to the symmetric and traceless component 
of the strain tensor, respectively.

m(eq) = Mf(eq) = r
(
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)T

(9)

The conserved variables of athermal fluid are only density and 
momentum. The corresponding equilibrium moments for the non-
conserved moments are [16–18]:
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In the numerical implementation of the MRT LB model for the 
flow field, the collision step is operated in the moment space while 
the streaming step is executed in the velocity space as:

collision : m̃ = m − S(m − meq) + δt(I − S

2
)F (16)

streaming : f i(x + eiδt, t + δt) = f̃ i(x, t) (17)

where f̃ = M−1m̃ is the post-collision distribution function with 
m̃ representing the post-collision distribution function in the mo-
ment space. The forcing term in moment space can be explicitly 
expressed as:
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