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We study the entanglement dynamics of two distinguishable atoms confined into a cavity and interacting 
with a quantum vacuum field. As a simplified model for this system, we consider two harmonic 
oscillators linearly coupled to a massless scalar field which are inside a spherical cavity of radius R . 
Through the concurrence, the entanglement dynamics for the two-atom system is discussed for a range 
of initial states composed of a superposition of atomic states. Our results reveal how the entanglement 
of the two atoms behaves through the time evolution, in a precise way, for arbitrary cavity size and for 
arbitrary coupling constant. All our computations are analytical and only the final step is numerical.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The entanglement phenomenon is one of the most exciting top-
ics of quantum theory, due to its non-locality property, which is 
considered as the central idea in quantum information process-
ing. During the last two decades there has been a growing interest 
in generating of entanglement, driven by the fast developments 
of experimental processes in quantum control. There are many 
potential applications in almost all quantum communication and 
computation protocols [1], such as quantum teleportation [2,3], 
quantum secure direct communication [4], quantum computation 
[5,6] among others.

Though entanglement is recognized as a fundamental ingredi-
ent for quantum information technology [1] it suffers from one 
drawback. Since quantum systems are always in contact with 
the surrounding environment, in general the quantum entangle-
ment decays in time, and in some situations can display the phe-
nomenon of sudden death, where entanglement ceases to exist at a 
finite time [7–9]. Consequently, the search for mechanisms to con-
trol the loss of entanglement has been of extreme importance and 
attracted the interest of diverse investigations, [10–14]. In general, 
the manipulation of quantum systems to create or maintain en-
tanglement for sufficiently long times involves the manipulation of 
quantum systems in cavities [14–16]. Therefore, a precise under-
standing of the cavity effects on the entanglement dynamics could 
be of usefulness to future studies on quantum systems in cavities.
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In this work, we will be mainly interested in studying how 
the cavity size affects the entanglement dynamics of a quantum 
system. Specifically, we will consider the dynamics of the entangle-
ment of a two-atom system driven by the quantum vacuum field, 
where the entire system is enclosed in a spherical cavity of ra-
dius R . As is well-known, an atom placed in a cavity changes its 
spontaneous decay rate in a dramatic manner going from the expo-
nential decay in free space to an almost stability for a sufficiently 
small cavity [17]. Therefore it is expected that the entanglement 
dynamics of two atoms confined in a cavity will be very different 
in relation to the free case.

Frequently in the literature, atoms are approximated by two 
level systems and in the context of the entanglement of two atoms 
system many works were devoted in the past (see for example 
[18–27] and references therein). However, to our best knowledge, 
the question regarding the cavity size dependence on the entan-
glement dynamics of such systems has not been addressed before 
from a theoretical point of view. It is the purpose of this work to 
fill partially this gap. However, an analytical treatment of this sit-
uation even in a perturbative scheme could be extremely hard, as 
one can conclude from Ref. [28], where the authors considered in 
perturbation theory the cavity effects on the radiative processes of 
two entangled two-level system. Therefore, instead of using two-
level systems coupled to the electromagnetic field, we use a sim-
plified model of atoms considering each one as a single harmonic 
oscillator and the electromagnetic field is taken to be a massless 
scalar field. Of course, real atoms do not have equally spaced en-
ergy levels, and they are not one-dimensional systems either. Also, 
in real situations, the entanglement dynamics is strongly influ-
enced by the surrounding environment, and therefore we should 
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include, for example, temperature effects. However our main pur-
pose in this work is not to understand how the nature of the atoms 
or the environment affects the entanglement dynamics, but to de-
termine what is its precise dependence on the cavity size.

To model the atoms trough harmonic oscillators, with regard to 
the stability of the ground state, we will work in the dressed co-
ordinates and states approach, which were introduced some time 
ago in the context of an harmonic oscillator coupled to a massless 
scalar field [29] and subsequently developed and applied in many 
situations [30–39]. From the physical point of view, these concepts 
allowed to make a clear distinction between the physical oscillator 
(atom) and the field degrees of freedom. Also the model accounted 
for the experimental observations of the decaying process of atoms 
in cavities [33]. On the other hand, the dressed coordinates and 
states approach has proven to be an advantageous technique to 
perform analytical calculations. As will be shown in this work, 
when the method is applied to the study of the entanglement of 
two harmonic oscillators (atoms), we will get analytical results for 
cavities of arbitrary radius or coupling constant, and only the final 
step will require to perform a numerical analysis. We will focus 
on the study of the first excited states of the harmonic oscillators-
field system, because as will be shown in section 2 the behavior of 
the spontaneous decaying processes is similar to one of two level 
atoms systems. Thus, the study of the entanglement dynamics of 
the first excited states will be sufficient for our principal purpose.

It is worth pointing out that there are several works in the 
literature wherein the entanglement dynamics for two harmonic 
oscillators has been extensively studied (see [40–52] and refer-
ences therein), however, to our best knowledge, the explicit cavity 
size dependence has not been considered before, as it will be done 
in the present work.

This paper is organized as follows. In section 2, we describe 
the model of the two harmonic oscillators (atoms) coupled to a 
massless scalar field, define the dressed coordinates, and states 
and compute some probability amplitudes that will be useful for 
further studies on the entanglement of the two-atom system in-
side the spherical cavity. In section 3, we discuss the entanglement 
of the two-atom system through the quantity called concurrence, 
illustrating the dynamics of the entanglement as a function of ar-
bitrary coupling constant and the cavity radius size. Finally, in sec-
tion 4 we present our conclusions. We will consider natural units 
h̄ = c = 1.

2. The model

Let us consider two identical atoms inside a spherical cavity 
linearly coupled to a massless scalar field. Roughly approximating 
the atoms by two harmonic oscillators of frequency ω0, the system 
can be described by the following Hamiltonian,

H = 1
2 (p2
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where the coordinates and momenta qA, p A and qB , pB correspond 
to the harmonic oscillators A and B respectively, the coordinates 
and momenta qk and pk are related to the field modes of fre-
quencies ωk and ck is the coupling strength between the harmonic 
oscillators and the modes of the scalar field. Since the system is 
enclosed in a spherical cavity of radius R , it is not difficult to find 
that the field frequencies and coupling strength are given respec-
tively by [29]
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where g is frequency dimensional coupling constant. The last term 
in Eq. (1) is introduced to guarantee the positiveness of the Hamil-
tonian and can be understood as a renormalization of the particle 
oscillator frequencies [53]. At the end of calculations in Eq. (1), we 
will take N → ∞. Also, note that we can recover the free space 
case taking the limit R → ∞.

The model Hamiltonian given by Eq. (1) has been introduced 
in Ref. [54] and used to study the entanglement between two sin-
gle harmonics oscillators in Ref. [51]. In order to diagonalize the 
Hamiltonian (1), we introduce the relative and the center of mass 
coordinates q− and q0 respectively, and given by

q− = 1√
2
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2
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Substituting the above relations in Eq. (1), we have
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Note that in the Hamiltonian (5), the relative coordinate q− is de-
coupled, thus, one can diagonalize the Hamiltonian ignoring the 
first term. For this purpose, we introduce, the collective coordi-
nates and momenta, Q r and Pr , given by

qμ =
∑
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∑
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μ Pr, (6)

where μ = 0, k, and tr
μ is given by
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It is worth to mention that the matrix {tr
μ} is orthogonal and sat-

isfies the following relations∑
μ

tr
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μ = δrs, and
∑
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μtr
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The Hamiltonian (5) can be rewritten in collective coordinates, 
which simply reduce to

H = 1
2 (p2− + ω2

0q2−) + 1
2

∑
r

(P 2
r + �2

r Q 2
r ), (9)

where the normal frequencies �r are the solutions of the equation
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Now, we are ready to write the eigenfunctions and energy eigen-
values of the system. The eigenfunctions are given by

φn−,n0,n1,..(q−, Q ) = φn−(q−)
∏
r=0

φnr (Q r), (11)

where φn−(q−), φnr (Q r) are one dimensional harmonic oscillator 
eigenfunctions of frequencies ω0 and �r respectively. Whereas the 
corresponding energy eigenvalues are,
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(
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)
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2
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where n−, nr = {0, 1, 2, ...}.
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