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In this letter we re-address a class of genuinely nonlinear third order dispersive equations; C1(m, a, b): 
ut + (um)x + 1

b [ua(ub)xx]x = 0, which among other solitary structures admit compactons, and demonstrate 
that certain subclasses of these equations may be cast into Hamiltonian and Lagrangian formulations 
resulting in new conservation laws, some of which are nonlocal. In particular, the new nonlocal 
conservation law of the K (n, n) equations enables us to prove that the response to a certain class of 
excitations cannot contain only compactons.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The CN (m, a, b) equations

CN(m,a,b) : ut + (um)x + 1

b
[ua∇2ub]x = 0,

m > 1,1 < n
.= a + b (1.1)

where N denotes the spatial dimension, have been introduced 
in [1] as a prototype of dynamics shaped by a genuinely non-
linear dispersion with a number of its cases studied in [1,2]. In 
its N-dimensional form it may be seen as a generalization of the 
Zakharov–Kuznetsov equation [3]. In particular, in the N = 1 case 
we have

C1(m,a,b) : ut + (um)x + 1

b
[ua(ub)xx]x = 0, (1.2)

which for a = 0 reduces to the more familiar K (m, n) equations [4]
(all coefficients may be normalized up to a sign)

ut + (um)x + (un)xxx = 0, 1 < m,n, (1.3)

well known for supporting compactons [4,5].
Whereas from both physical and mathematical points of view 

the C1(m, a, b) family of equations is a natural generalization of the 
celebrated KdV and mKdV equations (corresponding to a = 0, b = 1
and m = 2, 3 respectively in (1.2)), their variational structures do 
not extend in any intuitive way to the general case. The miracle of 
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integrability is already lost in the semilinear case for m > 3. Yet, 
whereas the loss of integrability, being a very delicate feature, is 
to be expected, the variational structure is a basic physical feature 
of the underlying system. Thus its vanishing is a bit puzzling.

We shall show that certain subcases of Eqs. (1.3) and (1.2) admit 
variational formulations, some of which are quite different from 
the conventional ones, and consider the resulting implications. To 
this end one has to employ nonlocal representations which unify 
the various cases. We shall also apply certain mappings to subcases 
of C1(m, a, b) provided that the image is a subcase of C1(m, a, b). 
We start by recapping few of the known features of the C1(m, a, b)

equations.

1.1. Certain features of the C1(m, a, b) equations

The C1(m, a, b) equations admit both traveling and stationary 
compactons. Let

ω := b + 1 − a.

ω plays a crucial role in shaping the dynamics; if ω > 0, the 
traveling compactons are evolutionary (note that for K (m, n), ω =
n +1), whereas if ω < 0 stationary compactons are evolutionary and 
emerge out of compact initial excitations [1,6]. Thus, for instance, 
whereas the C1(2, 1, 1) equation (ω = 1) supports an evolutionary 
traveling compacton

u(x, t) = 2λ cos2
(

x − λt

2

)
H (π − |x − λt|) (1.4)

where H(s) =
{

1, s ≥ 0
0, s < 0

is the Heaviside function, in the 

C1(4, 3, 1) case (ω = −1) the stationary compactons
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u(x, t) = u0 cos(x)H
(π

2
− |x|

)
(1.5)

are the ones to emerge from a compact initial excitation. As to the 
regularity of the dispersive part at compacton’s edge, we note that 
it can be rewritten as 

[
u3uxx

]
x =

[
1
4 (u4)xx − 3u2u2

x

]
x
. It is thus 

clear that all terms are well defined at the singularity.
The K (n, n), n > 1 equations (which correspond to C1(n, 0, n)), 

admit a finite number of local conservation laws [7]:

I1 =
∫

udx, Iω = 1

ω

∫
uωdx, I3 =

∫
u sin(x)dx and

I4 =
∫

u cos(x)dx. (1.6)

I1 and Iω are also conserved in the general C1(m, a, b) equa-
tions (1.2). In subsection 2.6 we shall briefly address the m =
1, − 1

2 , −2 cases which admit an infinite number of conservation 
laws, but do not support compactons.

2. Hamiltonian formulations and the main results

We shall now cast a number of subclasses of (1.2) as Hamilto-
nian evolution equations, but first we recall certain basic facts:

Definition 1. [8] An evolution equation ut = K (x, u, ux, uxx, ...) is 
said to be Hamiltonian if it can be written in the form

ut = D · δ

δu
H[u],

where H[u] is a functional and D a Hamiltonian operator – a skew 
symmetric operator which satisfies the Jacobi identity.

For later use we record a number of well known Hamiltonian 
operators, [8,9]:

1. All skew symmetric operators D with coefficients that do not 
depend on u and its derivatives.

2. D = ±D3
x + 2(λu +k(x))Dx + (λux +k′(x)), λ ∈R, k(x) ∈ C1(R).

3. D = ±D3
x + λDx · uD−1

x · uDx .

Clearly, the K (n, n) equations may be cast into a Hamiltonian 
form

ut = D
δ

δu
Iω(u), D = −Dx − D3

x . (2.1)

Definition 2. Let Q = Q (x, u, ux, uxx, ..). Its Fréchet derivative is 
the operator D Q defined by

D Q =
∑

k

∂ Q

∂uk
· Dk

x.

Its adjoint D�
Q is

D�
Q =

∑
k

(−Dx)
k · ∂ Q

∂uk
.

We shall utilize the following two Theorems:

Theorem 1. [10] Let D be a Hamiltonian operator depending on 
(x, u, ux, uxx, ...) and let y = P (x, u, ux, uxx, ...), w = Q (x, u, ux,

uxx, ...) be related to (x, u) by a differential substitution. Then the corre-
sponding Hamiltonian operator in the (y, w) variables is

D̃ = (Dx P )−1 J ·D · J �

where the operator J is given by

J = Dx P · D Q − Dx Q · D P

and J � is its adjoint

J � = D�
Q · Dx P − D�

P · D Q .

Theorem 2. [11] The Hamiltonian evolution equation ut = Dx
δ
δu H is 

equivalent to the Euler–Lagrange equation for the variational problem

L =
∫ (∫

1

2
ψxψtdx − H[ψx]

)
dt

where ψ(x, t) is the potential function of u(x, t), so that ψx = u.

Introducing a change of variables which maps our equations 
into ut = Dx

δ
δu H , we shall use Theorem 2 in the following sub-

sections to derive a Lagrangian associated with a few subcases of 
C1(m, a, b).

2.1. The K (n, n) equations

We start with

Lemma 1. The K (n, n) equations admit a Lagrangian formulation and 
the nonlocal conservation law

d

dt

∫ [
u(1 + D2

x)
−1u

]
dx = 0.

Proof. Referring to the Hamiltonian operator D = −Dx − D3
x , we 

apply the change of variables

v = Q (x, u, ux, uxx, ...) = L−1u

where L is the pseudo-differential operator

L =
√

D2
x + 1 = D1

x + 1

2
D−1

x − 1

8
D−3

x ...

to the K (n, n) equations. Then, by Theorem 1 in (x, v) variables, 
the Hamiltonian operator is

D̃ = D Q ·D · D�
Q = L−1 · (−Dx − D3

x) · (−L−1) = Dx.

Thus, in (x, v) variables equation (1.3), m = n reads

vt = Dx
δ

δv

∫
1

n + 1
(L(v))ndx. (2.2)

By Theorem 2, the Lagrangian of (2.2) is given by:

L =
∫∫ [

1

2
ψxψt − 1

n + 1
(LDxψ)n+1

]
dxdt (2.3)

where ψx = v . Using Noether relations between symmetries and 
conservation laws, invariance under space translation implies con-
servation of 

∫
v2 dx which in the original variables is a non-local 

conservation law

d

dt
I2(u) = 0, I2(u) =

∫
uL−2[u]dx. (2.4)

The functionals I1, I2, Iω may then be looked upon as a gen-
eralized mass, a generalized momentum (invariance under space 
translation) and a generalized energy (invariance under time trans-
lation), respectively, for the K (n, n) equations. �

Note that the new conservation law could have been deduced 
directly from the Hamiltonian, but from a mathematico-physical 
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