Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Edge eigen-stress and eigen-displacement of armchair molybdenum disulfide nanoribbons

Quan Wu^a, Xi Li^a, Alex A. Volinsky^b, Yanjing Su^{a,*}

^a Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing 100083, China ^b Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620, USA

ARTICLE INFO

Article history: Received 19 September 2016 Received in revised form 23 February 2017 Accepted 6 March 2017 Available online 9 March 2017 Communicated by R. Wu

Keywords: MoS₂ nanoribbons Size-dependent Young's modulus Poisson's ratio

ABSTRACT

Edge effects on mechanical properties of armchair molybdenum disulfide nanoribbons were investigated using first principles calculations. The edge eigen-stress model was applied to explain the relaxation process of forming molybdenum disulfide nanoribbon. Edge effects on surface atoms fluctuation degree were obtained from each fully relaxed nanoribbon with different width. Changes of the relaxed armchair molybdenum disulfide nanoribbons structure can be expressed using hexagonal perimeters pattern. Based on the thickness change, relaxed armchair molybdenum disulfide nanoribbons tensile/compression tests were simulated, providing intrinsic edge elastic parameters, such as eigen-stress, Young's modulus and Poisson's ratio.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Molybdenum disulfide (MoS₂) belongs to two-dimensional (2D) transition metal dichalcogenides [1]. Single layer MoS₂ is constructed by graphene-like hexagonal arrangement of Mo and S atoms stacked together to form S-Mo-S sandwiches. Recently, single layer MoS₂ captured researchers' interest due to its prominent mechanical [2–4], electronic [5], thermal [6], and optoelectronic [7] properties.

MoS₂ nanoribbons (MoS₂ NRs) are MoS₂ strips with ultranarrow width, obtained using electrochemical methods [8]. Based on their edge configuration, MoS₂ NRs are classified as armchair MoS₂ nanoribbons (AMoS₂ NRs) and zigzag MoS₂ nanoribbons (ZMoS₂ NRs). For armchair graphene ribbons (AGNRs), unique mechanical properties were found where AGNRs exhibited three periodicities in the nominal Young's modulus and Poisson's ratio [25]. Considering their band gap [9], intrinsic carrier mobility [10] and binding energy [11], AMoS2 NRs exhibit oscillating widthdependent behavior. The authors wanted to figure out whether AMoS₂Rs exhibit three periodicities in the nominal Young's modulus and Poisson's ratio, and further investigate the reasons. The elastic modulus [10–12], edge energy density [13,14] and edge stress [13,15] have been obtained for MoS₂ NRs considered as 2D

structures, i.e., without taking into account the influence of MoS₂ NRs thickness. However, the thickness of MoS₂ NRs varies with the width change. Hence, it is important to accurately determine the edge properties by taking into consideration the thickness change. Intrinsic edge parameters effects on mechanical properties, surface atoms fluctuation degree, edge eigen-stress and Poisson's ratio need to be investigated.

By taking the stress-free monolayer MoS₂ sheet as a reference, an AMoS₂ NR can be created from it. A newly formed AMoS₂ NR, with the lattice constant of the stress-free monolayer MoS₂ sheet, has substantially higher excess energy, and the free-edges (S-Mo-S sandwich structure) of the AMoS₂ NR are formed with eigen-stress [16]. The newly formed AMoS₂ NR relaxes unavoidably to reduce the excess energy and the edge eigen-stress. This relaxation causes initial deformation and relaxation-induced strain in the AMoS₂ NR along the length and thickness directions.

In the present study, AMoS₂ NRs were allowed to relax in two steps of normal relaxation and parallel relaxation, so that the change in the excess energy could be systematically studied. The surface atoms fluctuation degree was obtained from the changes of atomic positions at two layers of sulfur atoms. Perimeters of each hexagon ring in the relaxed AMoS₂ NRs are given to investigate the structure change. The nominal Young's modulus and Poisson's ratio were determined by performing tensile/compressive tests on the relaxed AMoS₂ NRs to extract the edge eigen-stress, edge Young's modulus and Poisson's ratio.

Corresponding author. E-mail addresses: volinsky@usf.edu (A.A. Volinsky), yjsu@ustb.edu.cn (Y. Su).

Fig. 1. The calculated geometry of the AMoS₂ NRs.

2. Computational methods

Density functional theory (DFT) calculations were performed by using the Vienna *ab* initio simulation package (VASP) [17] with the project-augmented wave (PAW) method [18]. The exchange correlation interaction was treated by the generalized gradient approximation with the PW91 functional [19]. The PAW potentials were used with the $4p^{6}5s^{1}4d^{5}$ valence states of molybdenum atoms and the $3s^{2}3p^{4}$ valence states of sulfur atoms. The $11 \times 11 \times 1$ and $1 \times 11 \times 1$ Monkhorst–Pack [20] *k*-points were set for the monolayer MoS₂ and AMoS₂ NRs, respectively, with an energy cut-off of 550 eV. The accuracy of the total energy calculations was on the order of 0.1 meV.

The equilibrium configuration of the monolayer MoS₂ was determined by energy minimization. The spacing of the nearest Mo-Mo was 3.197 Å, the bond length of the Mo–S bond was 2.421 Å, while the distance between the top and bottom layers in single layer MoS₂ was 3.132 Å, in good agreement with previous reports [21,22]. When an AMoS₂ NR is removed from its stress-free parent sheet, it has original dimensions of $L_0 \times W_0 \times T_0$, where L_0 , W_0 and T_0 represent the length, width and thickness of the AMoS₂ NR without any relaxation, respectively. The unrelaxed AMoS₂ NRs width W_0 was determined by using the equal mass method [23], i.e., the total mass of the atoms in the AMoS₂ NR was set equal to the product of the monolayer MoS₂ density and the volume of the simulated representative nanoribbon in its undistorted configuration. The number of atoms across the ribbon width index N_w was adopted to represent the width in this study, and the calculated AMoS₂ NR width ranged from 1.3 nm to 2.4 nm. The unrelaxed $AMoS_2$ NRs thickness T_0 was equal to the thickness of the MoS₂ monolayer, assumed to be 0.65 nm [3]. Fig. 1 shows that the structure was treated with periodic boundary conditions along the AMoS₂ NR length. To eliminate the interaction between AMoS₂ NRs, the calculated structure contained two 20 Å thick vacuum layers along the width and thickness directions.

3. Theoretical analysis

The relaxation process of $AMoS_2$ NR was separated into normal and parallel relaxations [16,25]. In the normal relaxation, all of the atoms were allowed to move in width and thickness directions, whereas in parallel relaxation, all of the atoms were allowed to move in all three directions. The dimensions changes to $L^{ini} \times W^{ini} \times T^{ini}$ with $L^{ini} = L_0 + \Delta L$, $W^{ini} = W_0 + 2p_0 + \Delta W$ and $T^{ini} = T_0 + \Delta T$, where p_0 is the edge eigen-displacement [22] and the change of width ΔW and thickness ΔT are caused by the Poisson's ratio effect. Relaxation causes initial deformation, and the relaxation-induced strain along the AMoS₂ NRs length and thickness directions are called the initial strain. The initial strain along the length and thickness directions is calculated as $\varepsilon_L^{ini} = (L^{ini} - L_0)/L_0$ and $\varepsilon_T^{ini} = (T^{ini} - T_0)/T_0$.

In equilibrium, zero total force along the length direction must be satisfied along any lateral section perpendicular to the length, and the traction-free boundary conditions must be met along the AMoS₂ NR edges. The initial edge stress and core stress after parallel relaxation were calculated as $\sigma_e^{ini} = \sigma_0^{ini} + Y_e \varepsilon_L^{ini}$ and $\sigma_c^{ini} = Y_c \varepsilon_L^{ini}$, respectively. The self-balanced force requires

$$2F_{e}^{im} + F_{c}^{im} = 0 (1)$$

where $F_e^{ini} = T^{ini}\sigma_e^{ini} = T^{ini}(\sigma_0^{ini} + Y_e\varepsilon_L^{ini})$ and $F_c^{ini} = W^{ini}T^{ini}Y_c\varepsilon_L^{ini}$ denotes the edge force and the core force, which includes the surface force of the two surfaces (S atomic layer) and the core force (Mo atomic layer) per unit length, respectively.

4. Results and discussion

Fig. 2(b) shows that the initial strain along the length direction increases as the width increases, whereas the initial strain along the thickness direction decreases with the width. As the dimensions change, the structures also change.

The edge effect on surface atoms fluctuation degree R_a of each fully relaxed AMoS₂ NR with different width was proposed to reflect the fluctuations of sulfur atomic layers at zero temperature. It was calculated using $Ra = \frac{1}{n_s} \sum_{i=1}^{n_s/2} [|Z_{top}^{NR} - Z_{top}^{sheet}| + |Z_{bottom}^{NR} - Z_{bottom}^{sheet}|]$, where n_s is the total number of sulfur atoms in AMoS₂ NRs, $Z_{top}^{NR}, Z_{bottom}^{NR}, Z_{top}^{sheet}$ and Z_{bottom}^{sheet} denote the sulfur atomic coordinate value along the thickness direction of the AMoS₂ NR's top-layer, AMoS₂ NR's bottom-layer, sheet's top-layer, and sheet's bottom-layer, respectively. Fig. 2(a) shows that the AMoS₂ NR surface atoms fluctuation degree increases as the width decreases. In this case, the change of thickness ΔT is determined by $\Delta T = d_{S-S}^{NR} - d_{S-S}^{sheet}$ in consideration of the uneven surface, where d_{S-S}^{NR} and d_{S-S}^{sheet} denote the arithmetic mean distance between the top layer and the bottom layer in AMoS₂ NRs and stress-free MoS₂ parent sheet, respectively.

The latest study [25] shows that the armchair graphene nanoribbons (AG NRs) with similar honeycomb-like structure to AMoS₂ NRs exhibit three periodicities in the nominal Young's modulus and Poisson's ratio. Investigations of the Young's modulus and Poisson's ratio of AMoS₂ NRs are reported later in the paper. The phenomenon of the width-dependent elastic properties and perimeter patterns with a periodicity of three depends on the nature of the edge, which can be explained by the Clar sextets [26]. The Clar sextets defined as six π -electrons localized in a single hexagons ring separated from adjacent rings by the C-C single bonds. Corresponding relationships were found between the hexagon perimeters pattern and the Clar sextets in AG NRs [26]. Without the Clar sextets, AMoS₂ NRs exhibit different hexagon perimeters pattern. Fig. 3 shows the hexagon "perimeters" (six sides are not in the same plane) of each relaxed AMoS₂ NRs with width N_w ranging from 8 to 15. In contrast to the AG NRs, the perimeter patterns of the AMoS₂ NRs show different variation rules. For the AMoS₂ NRs with 3n + 1 and 3n - 1 width, no obvious arrangement rule was observed. According to the structural symmetry, AMoS₂ NRs were classified by central $(N_w = 2k)$ and mirror $(N_w = 2k + 1)$ symmetry. As the width increases, the value of the hexagonal perimeter approaches the infinite MoS₂ sheet value.

Download English Version:

https://daneshyari.com/en/article/5496626

Download Persian Version:

https://daneshyari.com/article/5496626

Daneshyari.com